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Chapter 1

Tutorial 1

1.1 Photoelectric Effect

1.1.1 Question 1

Energy levels of Hydrogen atom are given by

En = −13.6

n2
eV (1.1)

The light emitted from the transitions of the hydrogen atom acts as the source of photons, each of energy
hν where ν is the frequency of the transition. We find the energy of the photons of each transition:

E = 13.6

(
1

n2f
− 1

n2i

)
eV (1.2)

In the photoelectric effect, we know that the photon is absorbed by the electron, part of its energy
is used in overcoming the work function of the material (ϕ), and the remaining is kinetic energy. The
stopping potential is a measure of the maximum kinetic energy of the electron (stopping potential of Vs
corresponds to a maximum kinetic energy of eVs. This gives the following equation:

hν = ϕ+ eVs (1.3)

We use this expression along with the stopping potential given for each transition to find the three values
work function, and find their average to arrive at our final answer for the work function of the material.

a) For n = 4 → n = 2,

E4→2 = hν1 = 13.6×
(
1

4
− 1

16

)
eV = 2.55 eV

ϕ1 = hν1 − eVs

= (2.55− 0.43) eV = 2.120 eV

(1.4)

Similarly for n = 5 → n = 2,

E5→2 = hν2 = 13.6×
(
1

4
− 1

25

)
eV = 2.856 eV

ϕ2 = hν2 − eVs

= (2.856− 0.75) eV = 2.106 eV

(1.5)
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And for n = 6 → n = 2,

E6→2 = hν3 = 13.6×
(
1

4
− 1

36

)
eV = 3.022 eV

ϕ3 = hν3 − eVs

= (3.022− 0.94) eV = 2.082 eV

(1.6)

Using the values of ϕ1, ϕ2, ϕ3 from above we get,

ϕavg =
1

3
(ϕ1 + ϕ2 + ϕ3) = 2.103 eV (1.7)

b) Balmer line (nf = 2) of shortest wavelength corresponds to max energy difference, so ni = ∞

hν =
13.6

4
eV = 3.4 eV

eVs = hν − ϕavg

Vs = 1.297 V

(1.8)

c) The highest energy transition of the Paschen series n = ∞ → n = 3, has energy = 13.6/9 eV = 1.51 eV.
Since this is less than the workfunction of the metal, we get no photocurrent.

1.1.2 Question 2

Recall that the stopping potential is that potential difference which is just sufficient to halt the most
energetic photoelectrons emitted, and thereby reduce the current measured to 0. Thus, for a stopping
potential V0, the photoelectrons have the maximum Kinetic Energy as given by -

KEmax = eV0

We also know from Einstein’s theory of Photoelectric effect :

KEmax = h(ν − ν0)

where h is the Planck’s constant, ν, ν0 are the incident frequency and threshold frequency respectively.
Thus, we solve the following linear equations :

1.6 ∗ 10−19 ∗ 4.62 = h
( 3 ∗ 108

1850 ∗ 10−10
− ν0

)
1.6 ∗ 10−19 ∗ 0.18 = h

( 3 ∗ 108

5460 ∗ 10−10
− ν0

)
Dividing the two and solving for ν0, we get ν0 = 5.06 ∗ 1014Hz.
Plugging this into either of the equations, we get h = 6.63 ∗ 10−34Js.
(Round off to 3 significant digits).

1.1.3 Question 3

Given: Intensity of incident light (I)= 1.0µW/cm2, area of metal surface (a)= 1cm2, Work function of
metal ϕ = 4.5eV , absorption efficiency of the metal (A)= 3%, conversion efficiency (η)= 100%, and satu-
ration current (Is)= 2.4 nA
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a) Number of electrons emitted per second= Is/e. As conversion efficiency is 100%, no. of photons
absorbed per second = no. of electrons emitted per second. Thus, no. of photons incident per second =
no. of photons absorbed per second/ absorption efficiency = Is/(A× e) = 5× 1011

b) Incident power (P )= I × a = 10−6W . Now,

Energy per photon =
Incident power

no. of photons incident per second
=
P ×A× e

Is
J

Thus,

Energy of incident photon (eV ) =
P ×A

Is
eV = 12.5eV

c) Kinetic enegy of ejected electron = 12.5− 4.5 eV= 8 eV . Thus, stopping potential = 8V

1.1.4 Question 4

a) Find the slopes of this graph (approximate values are fine). We get slope = 86.9 for 480nm and 202.9
for 613nm. Extend the lines to the point of no current (0nA). The potential difference here is the stopping
potential.

86.9 =
76.3− 0

−0.1 + Vs
=⇒ Vs ≈ 0.98V

and

202.9 =
64.7− 0

−0.1 + Vs
=⇒ Vs ≈ 0.42V

Using the standard equations, you can get the work function and cutoff wavelength easily.
Work function = 1.6 eV, Cutoff wavelength ≈ 770nm

b) Max K.E is charge times stopping potential. Answer = 0.98eV
To find the required photon energy, add the work function to half the Max K.E. Convert this to wavelength
using the standard relation. Answer ≈ 590 nm

c) Energy is proportional to frequency.
Frequency increases 1.2x =⇒ Energy increases 1.2x
Hence work function of new material = 1.2× 1.6eV = 1.92eV

1.1.5 Question 5

hc

λ
= ϕ+KEmax.

Given ϕ = 4.2eV . So
12400

2000
= 4.2 +KEmax =⇒ KEmax = 2.0eV.

Note that the value of KEmax is much less than the rest mass energy of electron which is 0.51MeV so our
non-relativistic assumption is more or less justified.
Slowest moving electrons are those moving with zero velocity, hence zero kinetic energy.

Stopping potential =
KEmax

e
= 2V.
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Let the cutoff wavelength be denoted by λ′. It is calculated using

hc

λ′
= ϕ =⇒ λ′ =

hc

ϕ
=

12400

4.2
Å = 2952.38 Å.

1.2 Black Body Radiation

1.2.1 Question 1

Given the spectral energy density u(λ) for a fixed T:

u(λ, T ) =
8πhc

λ5
· 1

exp hc
KbTλ − 1

For part a, to find the value of λmax for which u(λ) is maximised, we can now differentiate wrt. λ directly
since we have a fixed T, and equate it to zero.

du

dλ
= 0

−5
8πhc

λ6
· 1

exp hc
KbTλ − 1

+
hc

KbTλ2
· 8πhc
λ5

·
exp hc

KbTλ

exp hc
KbTλ − 1

2 = 0

5
KbTλ

hc
=

exp hc
KbTλ

exp hc
KbTλ − 1

We can solve this graphically; replace hc
KbTλ as x and plot 5

x and ex

ex−1 , their intersection is the solution for
x. (here we ignore x=0,−∞)
Now λmax = hc

4.965KbT
.

For part b, replace λmax = α
T , then :

umax(T ) =
8πhcT 5

α5
· 1

exp hc
Kbα

− 1

Figure 1.1: Source:Desmos, here seen the red curve (5/x) and blue curve ( ex

ex−1) intersect at 4.965 which
is our solution for x

5



1.2.2 Question 2

Power radiated by a black body = σAT 4 (Stefan-Boltzmann law).

Therefore power radiated by the sun,Ps= σ(4πR2
s)T

4
s .

Intensity of radiation from the sun at the earth = Ps
4πD2 , where D is the distance between the sun and

the earth.

Therefore power absorbed by the earth from the sun’s radiation = Ps
4πD2 × πR2

e.

Power radiated by the earth, = σ(4πR2
e)T

4
e .

For equilibrium, Power radiated by the earth = power absorbed by the earth,

Therefore,

σ(4πR2
e)T

4
e =

σ(4πR2
s)T

4
s

4πD2
× πR2

e

Te =

(
RsT

2
s

2D

) 1
2

= 424.26K

(1.9)

1.2.3 Question 3

Since Rayleigh-Jeans is not covered explicitly in the lectures, lets have an overview first. Physicists were
concerned with a theoretical formulation of the spectral energy density (energy per unit volume per unit
frequency) of the radiation within a blackbody, written as u(f, T ).

Wiens exponential Law

A dude called Wien (hopefully he wasn’t bullied a lot) ”guessed” (yes, that happens a lot in physics) the
form of this as :

u(f, T ) = Af3e−βf/T

with A and B as constants. This is called Wien’s Exponential Law, however it failed to explain the curve
in low energy regions (for higher λ).

Rayleigh Jeans Law

They had a nicer approach, and likened a standing EM wave inside the blackbody to a 1-D CLASSICAL
oscillator and used some statistical mechanics (dont worry about this now) to finally come to the conclusion
:

u(f, T )df =
8πf2

c3
kBTdf

However, this failed at the high energy regions (for shorter λ), and this is what is known as the ultraviolet
catastrophe.
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Planck’s Law

Ma boi Planck considered discrete values of energy for the now QUANTUM oscillator description, again
using some statistical mechanics and building upon the work by Rayleigh Jeans, came to the conclusion of
the following law:

u(f, T )df =
8πf2

c3

(
hf

ehf/kBT − 1

)
df

All the three are compared in the following plot:

Figure 1.2: The comparison of the following descriptions, and we know that Planck’s description explains
experimentally found values perfectly

Finally, onto the question

a)Now that we know Rayleigh Jeans fails at short λ, we use the approximation of very high λ. We have :

u(λ, T ) =
8πhc

λ5
1

e
hc

λkBT − 1

In the high λ limit, the exponential factor becomes negligible, we approximate the denominator as

exp

(
hc

λkBT
− 1

)
≈ hc

λkBT

using which, we finally get the Planckian limit as -

u(λ, T )dλ =
8π

λ4
kBTdλ

Now, we consider the RHS of the Rayleigh-Jeans as presented in the short description. A SUBTLETY here
is that we need to find the corresponding relation for the energy density, which is the final integral from 0
to ∞ and hence ”df is multiplied” both sides. While doing a change in variables, in general, the derivative
of the variable might have a functional dependence, which we need to incorporate too. We retain df , and
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do the following calculation:

u(f, T )df =
8πf2

c3
kBTdf

=
8πc2

λ2c3
kBTd(

c

λ
)

=
8π

λ2
kBT

1

λ2
dλ

u(λ, T )dλ =
8π

λ4
kBTdλ

(The - sign is accounted for in the change of limits in the integration finally).
This is the same as the limit of the Planck’s law, and hence Rayleigh Jeans formula is obtained given
Planck’s formula.
b) This basically means that for ν0, the Rayleigh-Jeans formula gives a value 10 times that of Plancks
formula, that is:

8πν20
c3

kBT = 10 ∗ 8πν20
c3

hν0

ehν0/kBT − 1

Let x = hν0
kBT , thus the implicit equation becomes:

ex − 1 = 10x

c) Draw the graph, and calculate the h(x) = ex − 1 − 10x for integer values of 1,2,3 and 4 of x. Using
Intermediate Value theorem, note that the sign changes between x = 3 and x = 4. Thus the root lies
between them. Do the same for 0.1 increments in this range, and you will find that the sign changes
between 3.6 and 3.7. Similarly for the next decimal place to round off, you will finally find that x = 3.6 is
the correct solution.

1.2.4 Question 4

We know that Planck’s formula for the spectral energy density in terms of wavelength is given by

u(λ, T )dλ =
8πhc

λ5(ehc/λkBT − 1)
dλ

To find the wavelength at which the function u(λ, T ) peaks, we differentiate the function with respect to
λ and equate it to zero. Thus,

8πhc

(
−5

λ6(ehc/λkBT − 1)
+

1

λ5(ehc/λkBT − 1)2
× hc

λ2kBT

)
= 0

Writing hc/λkBT as x, this simplifies to the transcendental equation

5(ex − 1) = xex =⇒ (x− 5)ex + 5 = 0

Using Desmos, this can be graphed to get an exact solution (x = 4.965). However, if we make the
approximation that ex ≈ ex − 1, we get x ≈ 5 (which agrees with our approximation). Thus,

hc

λmaxkBT
≈ 5 =⇒ λmaxT ≈ 2.88× 10−3

which agrees very well with the Wein’s constant of 2.89× 10−3
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1.3 Compton Effect

1.3.1 Question 1

This is a simple question requiring:

• The wavelength formula to calculate incident frequency ν0

• Conservation of momentum to calculate recoil angle ϕ

Incident frequency:
λ′ = λ0 + λc(1− cos θ)

2λ0 = λ0 + λc(1− cos
π

2
)

λ0 = λc
c

ν0
= λc

=⇒ ν0 =
mec

2

h

Recoil Angle:
(Draw the momentum diagram yourself to verify!)
Let the final momentum of electron be pe. You get 2 equations:

Parallel conservation:
h

λ0
= pe cosϕ

Perpendicular conservation:
h

2λ0
= pe sinϕ

=⇒ ϕ = arctan(
1

2
)

1.3.2 Question 2

We can approximate

√
1 +

E2
0

E2 by checking that 1
8(

1
2.5)

2 << 1. So we can use the non-relativistic method
to a good extent.

λ′ = λ0 + λc(1− cos θ).

Maximum kinetic energy of electron corresponds to maximum λ′ i.e. wavelength of scattered photon, hence
to θ = π. So

λ′max = λ0 + 2λc.

From energy conservation we have
hc

λ0
=

hc

λ′max

+
mec

2

2.5
.

Substituting the first expression for λ′max (in terms of λ0) in the second expression we get the solution for
λ0 as

λ0 = (
√
6− 1)λc.

EX−ray =
hc

λ0
=

mec
2

√
6− 1

= 0.69mec
2
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1.3.3 Question 3

Let us first show photoelectric effect is not possible with a free electron. Initially, we have a free electron,
and a photon with some wavelength λ. Without a loss of generality, we can assume initial momentum of
the electron is 0 (if not, shift to a frame where it is zero). After the electron absorbs the photon, let it
have some momentum p. Now conserving momentum:

h

λ
+ 0 = p

And conserving energy(accounting for rest-mass of the electron as well since non negligible here):

hc

λ
+

√
(mec2)

2 + (0.c)2 =

√
(mec2)

2 + (p.c)2

using p from the momentum:

→ 2
hc3me

λ
= 0

Which implies either me = 0, which is not possible or initial momentum of the photon, h
λ = 0 which implies

no collision took place. Thus photoelectric effect is not possible for a free electron.
On the other hand, Let us see Compton effect. Again, we assume initial momentum of the electron to be
zero, and a photon of wavelength λ striking it. The electron say, finally is propelled with a momentum p⃗
making angle θ with the initial direction of photon, and the photon is scattered with wavelength λ′ making
an angle ϕ in the opposite direction.
Conserving momentum:

h

λ
+ 0 = pcos(θ) +

h

λ′
cos(ϕ)

psin(θ) =
h

λ′
sin(ϕ)

Conserving energy:
hc

λ
+

√
(mec2)

2 + (0.c)2 =

√
(mec2)

2 + (p.c)2 +
hc

λ′

Solving these equations, doesn’t give any contradiction, and non zero values of p can be found, hence
Compton effect for a free electron is possible, since photon absorption and re-emission is taking place.

1.3.4 Question 4

Recall the change in wavelength due to Compton scattering as derived in the lectures :

λ′ − λ =
h

m0c
(1− cos θ)

Where λc = h
m0c

is the Compton wavelength and m0 is the mass of the scatterer. We assume that both
the experiments were performed on the same target material.
a) For the first experiment, ∆λ = 7× 10−14m and θ = 45◦

7× 10−14 = λc(1−
1√
2
)

λc = 2.4× 10−13m (Compton Wavelength)

m0 = 0.92× 10−29Kg (Mass of scatterer)
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b) For the second experiment, λ′ = 9.9× 10−12m and θ = 60◦, and let λ2 be the incident wavelength

9.9× 10−12 − λ2 = 2.4× 10−13(1− 1

2
)

λ2 = 9.8× 10−12m

λ1 = 4.9× 10−12m

since E2 = E1/2 =⇒ λ2 = 2× λ1.

1.3.5 Question 5

Let the minimum possible energy of the photon for 50% energy transfer be E (= Ei) and thus, Ef = E/2.
For the Compton effect, the equation is:

∆λ =
h

mec
(1− cos θ)

=⇒ hc

(
1

Ef
− 1

Ei

)
=

h

mec
(1− cos θ)

=⇒ 1

E
=

1

mec2
(1− cos θ)

=⇒ E =
mec

2

(1− cos θ)

(1.10)

For minimum possible energy, take cos θ = −1, m

E =
1

2
mec

2 = 0.255MeV

1.3.6 Question 6

Consider the expression for wavelength shift for Compton scattering as derived in class:

λ′ − λ0 =
h

mec
(1− cos θ)

Note that this was derived without any approximations. Since it is given in the question that we are
detecting back-scattered radiation, θ = 180◦. Plugging this in, we get the answer to part a. Now, the
wavelength of the scattered radiation is

λ′ =
2h

mec
+ λ0

Dividing both sides by hc, we get the energy of scattered radiation to be

1

E′ =
2

mec2
+

1

E

But, we are given that E >> mec
2. Hence, we can safely neglect the second term on the RHS with respect

to the first and get the energy of scattered radiation to be

E′ =
mec

2

2
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This answers part b. Now, by energy conservation, we have

E +mec
2 = E′ + Ee =⇒ Ee −mec

2 = E − E′ = E − mec
2

2

Which is just the recoil kinetic energy of the electron. Plugging in the values for part c and taking the
rest mass energy of an electron to be 0.5110 MeV , we get the recoil kinetic energy of the electron to be
149.7445 MeV .

1.3.7 Question 7

This question isn’t correct. Here are some correct concepts related to what the question is trying to say:

Let us take k = E
m0c2

and k′ = E′

m0c2
(Hence we are re-scaling the photon energy in terms of the rest

mass energy of the electron)

E′ =
hc

λ′

E′ =
hc

λ+ λc(1− cos θ)

E′ =
hc

hc
E + hc

m0c2
(1− cos θ)

E′ =
1

1
E + 1

m0c2
(1− cos θ)

E′

m0c2
=

1
m0c2

E + (1− cos θ)

k′ =
1

1
k + (1− cos θ)

(1.11)

Now we can treat k and k’ as energy terms. (In fact, they are energy terms, but in different scales. You can
make sense of this as dividing all the SI units in physics by m0c

2. Hence we are doing the same physics,
but in different units.)

Equation (11) relates the energy of the scattered photon k′ to the energy of the incoming photon k when
the photon scattering angle θ is given. It is easy to see that for any fixed angle, increasing the incoming
energy increases the scattered photon energy. (Put the equation in a graphing calculator yourself and mess
around!). From the figure below, you can see that energy peaks at 0 and is minimum at 180 degrees.

Figure 1.3: Value of outgoing photon energy k’ vs scattering angle (in degrees) for k = 4
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Now taking the limit of the incoming photon energy tending to infinity (k → ∞), we get: (Plotted
below)

k′ =
1

1− cos θ
Obviously, any value of k’ must lie below this line. Hence for every scattering angle, there is a
maximum for the energy of scattered photon, but overall there is no maximum as we can get
arbitrarily large values of energy for scattering angles close to 0 degrees. (For example, at 180 degrees, the
max energy is 0.5m0c

2)

Figure 1.4: Limit of k’ vs scattering angle (in degrees) for infinite k

1.3.8 Question 8

λ2 = λ1 + λc(1− cos θ),

λ3 = λ2 + λc(1− cos
π

2
− θ).

(a) Adding the two equations and doing some manipulations we get

sin 2θ = (2− ∆λ

λc
)2 − 1 = 0.867 = sin

π

3
= sin

2π

3
= .....

But clearly the angle θ shown in figure lies between π
4 and π

2 . So θ =
π
3 is the solution.

(b)

λ1 = λ2 −
h

mc
(1− cos θ) = 0.068− 0.00243(1− cos

π

3
) = 0.066785nm

From momentum conservation, we have

pe sinϕ =
h

λ2
sin θ,

pe cosϕ =
h

λ1
− h

λ2
cos θ.

Dividing the two equations we get

tanϕ =
sin θ
λ2

1
λ1

− cos θ
λ2

= 1.67 =⇒ ϕ = 59.1◦.
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Chapter 2

Tutorial 2

2.1 de Broglie Wavelength

2.1.1 Question 1

This is a fairly straightforward question to get you used to order of magnitude estimates.

λ =
h

p
(2.1)

Note that we need to use the relativistic expression for momentum wherever applicable (i.e. p = γm0v).

For a car of mass 2000 kg, and v = 100 km/h = 27.78 m/s, it is sufficient to consider the non-relativistic
momentum since v << c.

λ =
6.626× 10−34

2000× 27.78
m

= 1.19258× 10−38 m

(2.2)

This is obviously very small compared to the actual dimensions of a macroscopic car (4-5 m), and hence it
is not possible to observe the wave nature and too small to measure with any reasonable apparatus.

For the cricket ball also, it is sufficient to use the nonrelativistic value of momentum.

λ =
6.626× 10−34

0.28× 40
m

= 5.916× 10−35 m

(2.3)

While this is a few orders of magnitude higher than the de Broglie wavelength of the car, it is still not
possible to observe the wave nature since it is negligible compared to the dimension of the cricket ball
(around 10 cm), and too small to measure with any reasonable apparatus.

For the electron, we may consider the relativistic momentum.

p =
mv√

(1− v2/c2)

= 9.315× 10−24
(2.4)
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λ =
6.626× 10−34

0.28× 40
m

= 7.11× 10−11 m

(2.5)

This can be measured, and is comparable to the size of an atom (few Å) within which the electron can be
considered to be localised. The wave nature can thus be observed.

2.1.2 Question 2

We will use the wave nature of the electron to make sense of the Bohr’s quantization condition, which
was a purely observational result. The de Broglie wavelength of an electron λdB = h/pe. If we somehow
manage to show that the allowed orbits are precisely the ones that can be exactly spanned by an integer
multiple of the de Broglie wavelength, then we can infer that the electron forms standing waves along the
orbital circumference. Just have a look at the following figure. Things will make more sense.

Figure 2.1: Standing waves on (a) a string tied between two rigid supports; (b) the orbital circumference

You may be wondering why the circumference has to be nλ and not nλ/2. The problem with the odd
multiples of λ/2 is that it causes ”destructive interference”. For stability, the ”wave function” of the
electron must match itself after completing a 2π cycle. Don’t worry if you are unable to understand the
above statement right now because you will learn stuff like this in detail in your quantum chemistry course!

Recall the Bohr’s quantization condition: ”The angular momentum of the electron is an integer multiple
of h/2π.”

L = rnpe = n
h

2π
(2.6)

2πrn = n
h

pe
(2.7)

2πrn = nλdB (2.8)

Hence, the orbital circumference is the an integer multiple of the electron’s de Broglie wavelength. This is
what we wanted to show!
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2.1.3 Question 3

a) We know that the wavelength of a photon is given by

λ =
hc

E
=

6.625× 10−34 × 3× 108

5× 103 × 1.6× 10−19
= 0.248 nm

b) The de-Broglie wavelength of a matter particle is given by (non-relativistically)

λ =
h

p
=

h√
2m(KE)

For an electron,

λe =
h√

2× 500× 5
× c

keV
= 0.0176 nm

c) For a neutron,

λn =
h√

2× 1000× 5
× c

keV
= 0.0124 nm

2.1.4 Question 4

A case of sequential logic:

1. Temperature is related to the thermal kinetic energy.

2. Thermal kinetic energy is related to momentum

3. Momentum is related to the de Broglie wavelength

Kinetic Energy = KBT =
p2

2mp

=⇒ T =
p2

2mpKB

T =
(hλ)

2

2mpKB

T =
( h
2r1

)2

2mpKB

T =
h2

8r21mpKB

T ≈ 847K
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2.2 Interference, Diffraction, YDSE, Davison-Germer experiment

2.2.1 Question 1

A single molecule of Buckminster Fullerene C60 has rest mass m0 = 60 × 12 × 1.67262 ∗ 10−27 kg =
1204.2864 ∗ 10−27 kg. Notice that

p = γm0v =
m0v√
1− v2

c2

≈ m0v(1 +
1

2

v2

c2
) ≈ m0v

since m0v3

2c2
<<< 1.

(a) de Broglie Wavelength

λ =
h

p
=

h

m0v
=

6.626 ∗ 10−34

1204.2864 ∗ 10−27 × 100
m = 0.0055 ∗ 10−9 m = 0.0055 nm

(b) Frindge width

β =
λD

d
=

0.0055

150
× 1.25m = 45.85 µm.

(c) Distance between consecutive frindges is approximately 45850 times more than the diameter of buck-
balls. Visibility of interference frindges gets disrupted if size of buckballs become comparable to frindge
width as we cannot treat the molecules as point particles then. Basically we want to find the initial velocity
v such that

10 Å =
λD

d
=

h
mev

D

d
.

This gives us v = 4.598× 106 m/s.

2.2.2 Question 2

We have both the k⃗ vectors given, hence can write the equations of two waves, w1 and w2, with amplitudes
A1 and A2 as :

w1 = A1 · ei(
2π
λ
(x+y+z)−

√
3wt)

w2 = A2 · ei(
2π
λ
(z)−wt)

The resultant sum can then be written as:

w = w1 + w2

w = A1 · ei(
2π
λ
(x+y+z)−

√
3wt) +A2 · ei(

2π
λ
(z)−wt)

w = A1 · ei(
2π
λ
(x+y+z)−wt) · (e(1−

√
3)wt +

A2

A1
e−i( 2π

λ
(x+y)))

Though it isn’t mentioned in the question, we can assume the amplitudes to be the same, i.e., A1 = A2 =
A. (if not we just have to simplify the previous expression)

w = A · ei(
2π
λ
(z)−wt) · (1 + ei(

2π
λ
(x+y))+(1−

√
3)wt)

Now, Intensity is proportional to |w|2 ie:

I = A2 · 2(1 + cos(
2π

λ
(x+ y) + (1−

√
3)wt))

This, if plotted will show up as sinusoidal variations in intensity traveling along the x = y line, and as
constant intensity along lines with slope -1.
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2.2.3 Question 3

Note that distance between slits (d) = 0.8mm = 8×10−4m and distance between screen and plane of slits (D) =
1.6m. Since d << D, we consider the approximation sin θ ≈ tan θ = y

D is valid, for small enough y, which
is the distance from the centre on the screen.

a) Roughly, the intensity pattern looks something like –

Figure 2.2: The intensity pattern at the screen

With the broad effect of diffraction visible at larger distances, and hence decreasing the amplitude (and
hence Intensity) of the successive maxima formed by the interference through the two slits.

b) For a maxima, assuming the distance calculated is within the above approximation limit, we have

d
∆y

D
= ∆nλ

=⇒ λ = 8× 5× 10−7/1.6

=⇒ λ = 2500 nm

c) Here, covering the slits with a thin film changes the effective distance travelled by light, and hence the
interference pattern. The central maxima is usually at distance 0, or for equal path lengths from the two
slits. Note that after the introduction of a slab with refractive index µ and thickness x, the net change in
path length using the above approximation is (µ− 1)x. Thus, we have the central maximum to now occur
at:

(µ− 1)x =
yd

D

Fringe width =
λD

d

=⇒ (µ− 1)x =
2.2λD/d× d

D
=⇒ x = 2.2× 2500/0.4nm

=⇒ x = 0.014mm

d) Using the superposition principle, the net intensity on the screen would be the superposition of the
individual interference patterns. According to the above question, for λ1 = 450nm and λ2 = 600nm we
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have the first case:

d sin θ = nλ1

d sin θ = (m+ 1/2)λ2

=⇒ 3n = 4m+ 2

Which holds at the lowest order for n = 2 and m = 1, and for the second case :

d sin θ = nλ2

d sin θ = (m+ 1/2)λ1

=⇒ 4n = 3m+ 1.5

Which will not hold for any integer values, and hence we disregard this case.
Thus, the 1st order minima of 600nm coincides with the 2nd order maxima of 450 nm.

2.2.4 Question 4

When the light source is used to determine which of the slits the electron passes through, the resultant
intensity is just the sum of the individual intensities.

Itot =
|A1|2 + |A2|2

1 + y2
(2.9)

We can explicitly find the normalisation constants A1, A2 using
∫∞
−∞ dyψ∗

i ψi = 1. This yields,A1 = A2 =
1√
π
. This gives us:

Itot =
2

(1 + y2)π
(2.10)

When the light source is not used to determine the slit through which the electron passes, we have to first
consider the total wavefunction ψ = ψ1 + ψ2, and then find the corresponding intensity ψ∗ψ.

ψ =
1√

π(1 + y2)
× (e−i(ky−ωt) + e−i(ky+πy−ωt))

ψ =
1√

π(1 + y2)
e−i(ky−ωt)(1 + e−iπy)

Itot = ψ∗ψ =
1

π(1 + y2)
|(1 + e−iπy)|2

=
4

π(1 + y2)
cos2(

πy

2
)

(2.11)

Figure 2.3: Red: Light source determines which slit the electron passes through, no interference, Blue:
Light source does not determine which slit the electron passes through, interference maxima and minima
observed
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2.2.5 Question5

a) Our first step is to find out the de Broglie wavelength of the electrons being used (λdB = h/p).

λdB =
h√
2mE

≈ 1.69 Å (2.12)

First maxima occurs at θ = 35◦. Thus, λdB = d sin θ =⇒ d = 1.69/ sin(35◦) Å = 2.94 Å. At this point,
you may be confused about the formula λdB = d sin θ. In the situation under consideration, the path
difference is different from what we already have in mind.

Clearly from the above figure, the path difference ∆x is d sinϕ. In our case, ϕ = θ. Therefore, nλ = d sin θ
! Once we have this formula in hand, rest of the parts become fairly straightforward.

For the second maxima, we shall simply put n = 2 in the formula we derived above.

2λdB = d sin θ2

sin θ2 =
2λdB
d

=
2× 1.69

2.94
> 1

Thus, no other angle exists for which a maxima occurs.

Now, suppose we triple the energy, then the momentum gets scaled up by
√
3 =⇒ λ′dB = λdB/

√
3. Using

this we find the angle at which the first maxima occurs:

λ′dB = d sin θ′1

sin θ′1 =
1.69

2.94×
√
3
= 0.332

θ′1 = 19.39◦

Similarly, the angle at which the other peaks occurs can be found out as follows:

nλ′dB = d sin θ′n

sin θ′1 =
n× 1.69

2.94×
√
3
=

n

3.01
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For a valid θ′n to exist, sine of that angle must be less than 1 =⇒ n < 3.01. Thus, for n = 1, 2 and 3,
we can observe maxima. Although the maxima corresponding to n = 3 is very difficult to observe since
theta′3 is very close to 90◦.

2.2.6 Question 6

a) Easy substitution of formula
λ = d sin θ

h√
2mE

= d sin θ

h

sin θ
√
2mE

= d

=⇒ d = 5.64 A◦

b)
Calculating Na: 6× 1

2 faces +8× 1
8 corners = 4

Therefore, answer must be 4
(Re-check using Cl: 12× 1

4 edges +1 centre = 4)

c)

Density =
Mass of cube

Volume of cube

Density =
No. of molecules in cube × Weight of 1 molecule

Volume of cube

Density =
No. of molecules in cube × Weight of 1 mole of NaCl

Volume of cube × Avogadro’s number

=⇒ Avogadro’s number =
No. of molecules in cube × Weight of 1 mole of NaCl

Volume of cube × Density

Avogadro’s number =
4× 58.44g

(5.64× 10−10)3 × 2.17g
10−6

Avogadro’s number = 6× 1023
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Chapter 3

Tutorial 3

3.1 Wave packets, Group and Phase Velocity

3.1.1 Question 1

We consider the following wave-functions:

ψ1(y, t) = 5y cos(7t)

ψ2(y, t) = −5y cos(9t)
(3.1)

Their superposition gives us:

ψ = ψ1 + ψ2

= 5y(cos(7t)− cos(9t))

= 10y

(
sin(

(7 + 9)t

2
sin

(9− 7)t

2

)
= 10y sin(8t) sin(t)

(3.2)

The higher frequency wave sin(8t) will be modulated by the lower frequency wave sin(t). This lower
frequency waved is the modulating wave. It forms the envelope within which higher frequency oscillations
take place.

Figure 3.1: The sin(t) forms the envelope, which modulates the signal. Within the envelope, there are
faster oscillations, which are due to the higher frequency wave, sin (8t) in green. The resultant modulated
wave is shown in red.
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3.1.2 Question 2

We are given two wave equations y1 = 0.002 cos(8.0x − 400t) and y2 = 0.002 cos(7.6x − 380t). Our first
task is to find the resultant wave, which is simply the sum of the two:

y = y1 + y2 = 0.002{cos(8.0x− 400t) + cos(7.6x− 380t)} (3.3)

= 0.004{cos(7.8x− 390t) cos(0.2x− 10t)} (3.4)

The first cosine on the right hand side represents the fast oscillating wave part, and the second cosine
represents the envelop. Thus, the phase velocity vp can be obtained from the wave part, and the group
velocity vg from the envelop part.

vp =
ω

k
=

390

7.8
= 50 m/s (3.5)

vg =
∆ω

∆k
=

10

0.2
= 50 m/s (3.6)

In order to find out ∆x, we just have to locate two adjacent zeroes of the envelop part.

0.2x1 − 10t =
π

2
(3.7)

0.2x2 − 10t =
π

2
(3.8)

0.2(x2 − x1) = π (3.9)

∆x = 5π (3.10)

∆k is the difference between the k’s of the two given waves, i.e., 0.4 =⇒

∆x∆k = 5π × 0.4 = 2π (3.11)

3.1.3 Question 3

We know that phase velocity and group velocity are given by

vp =
ω

k
, vg =

dω

dk

Thus,

vp =

√
g

k
+
Tk

ρ
, vg =

1

2
√
gk + Tk3/ρ

×
(
g +

3k2T

ρ

)
a) For large wavelengths or small k,

vp =

√
g

k

vg =
1

2
√
gk

(
g +

3k2T

ρ

)(
1 +

Tk2

gρ

)−1/2

≈ 1

2
√
gk

(
g +

3k2T

ρ

)(
1− Tk2

2gρ

)
Ignoring, higher order k terms,

vg =
1

2

√
g

k

b) For small wavelengths or large k,

vp =

√
Tk

ρ
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vg =
1

2

(
1

g/k + Tk/ρ

)1/2(g
k
+

3kT

ρ

)
Ignoring 1/k terms,

vg =
3

2

√
Tk

ρ

3.1.4 Question 4

Consider a relativistic particle of mass m and travelling with a velocity v. The phase velocity is given by

vp = λν

Now,

hν = E = γmc2 =⇒ ν =
γmc2

h

Also,

p = γmv =
h

λ
=⇒ λ =

h

γmv

Thus,

vp =

(
h

γmv

)(
γmc2

h

)
=
c

v
> c

We know the Einstein energy-momentum relation to be

E2 = p2c2 +m2c4 =⇒ ℏ2ω2 = ℏ2k2c2 +m2c4

Dividing throughout by ℏ2,

ω2 − k2c2 =
m2c2

ℏ2
which is the required relation between ω and k. Thus,

2ωdω − 2kc2dk = 0 =⇒ vg =
dω

dk
=
kc2

ω
=
c2

vp
=

c2

c2/v
= v

3.1.5 Question 5

(a) vp =
ω
k = 1√

ϵµ = c√
ϵrµr

(b) ω
k = c√

1−ω2
p

ω2

=⇒ ω(k) =
√
k2c2 + ω2

p

(c) vp =
ω
k = 3

√
2

4 c = 1.06c

vg = dω
dk = c2k

ω = c2

vp
= 2

√
2

3 c = 0.94c

3.1.6 Question 6

Here,

vp =
ω

k
=
ω0sin(ka/2)

k

and

vg =
dω

dk
=
ω0acos(ka/2)

2

24



For the wave to be non-dispersing, for part a, we have to show the group and phase velocities are the same
at large wavelengths, ie the limit λ goes to infinity. This means k in the limit goes to zero. Then:

vp =
ω0sin(ka/2)

ka0.5
· a
2
=
ω0a

2

vg =
ω0acos(0)

2
=
ω0a

2

Here in the limit we see vp = vg hence is non dispersing.
For part b, we simply have to evaluate vp and vg for the given k value, π/a which gives ω0a/π and 0
respectively.

3.1.7 Question 7

From the given dispersion relation of the large number of SHO (possibly a solid), we have :

w(k⃗) =

√
2βx(1− cos(kxax)) + 2βy(1− cos(kyay))

m

The generalization of the definition you have studied for the group velocities for higher dimensions is :

vg = ∇
k⃗
w⃗

Which for our case becomes:

vg =
∂w

∂kx
i⃗+

∂w

∂ky
j⃗

=
βxax
mw

sin(kxax)⃗i+
βyay
mw

sin(kyay )⃗j

=⇒ vg =
βxax
mw

sin(kxax)⃗i+
βyay
mw

sin(kyay )⃗j

This is the group velocity, and the angle it makes with the x axis is simply :

θ = tan−1

(
βyay sin(kyay)

βxax sin(kxax)

)
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Chapter 4

Tutorial 4

4.1 Fourier Transform

4.1.1 Question 1

We are given the following function in k-space

ϕ(k) =

{
A(a− |k|) if |k| <= a

0 otherwise
(4.1)

First, we find the normalization factor. ∫ ∞

−∞
ϕ∗(k)ϕ(k)dk = 1∫ a

−a
|A|2(a− |k|)2dk = 1

2|A|2
∫ a

0
(a− k)2dk = 1

2|A|2a
3

3
= 1

|A| =
√

3

2a3

(4.2)
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We use the inverse Fourier transform of this function, to get the function in x-space.

f(x) =
1√
2π

∫ ∞

−∞
ϕ(k)eikxdk

=
1√
2π

∫ a

−a
A(a− |k|)eikxdk

=
A√
2π

[[
a

(
eikx

ix

)]a
−a

−
[
k
eikx

ix

]a
0

+

[
eikx

(ix)2

]a
0

−
[
−ke

ikx

ix

]0
−a

+

[
− eikx

(ix)2

]0
−a

]

=
A√
2π

(2− eiax − e−iax)

x2

=
A√
2π

(2− 2 cos(ax))

x2

=
4A√
2π

(sin2(ax2 ))

x2

=
Aa2√
2π

sinc2(
ax

2
)

(4.3)

An estimate for the uncertainty can be taken to be the distance between the centre to the first zero of the
sinc functiont. Therefore, ∆x = 2π

a .

Similarly, an estimate for the uncertainty in momentum from the triangular graph gives, ∆k = a.

∆x∆k = 2π

∆x∆p = 2πℏ >=
ℏ
2

(4.4)

Hence it is consistent with HUP.

4.1.2 Question 2

We are given a wave-packet of the form f(x) = cos2(x2 ) for x ∈ [−π, π] and 0 otherwise. It is a very easy
to plot function which you may have sketched several times in your JEE days.

a) The plot of f(x) vs x looks like:
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b) Next, we need to find out the Fourier transform of f(x). We can re-write cos2(x/2) as (1 + cosx)/2.

g(k) =

∫ ∞

−∞
f(x)e−ikxdx (4.5)

=
1

2

∫ π

−π
(1 + cosx)e−ikxdx (4.6)

=
1

2
[
eikπ − e−ikπ

ik
] +

1

4

∫ π

−π
e−i(k−1)x + e−i(k+1)xdx (4.7)

=
sin kπ

k
+

1

2
[
sin(k − 1)π

k − 1
+

sin(k + 1)π

k + 1
] (4.8)

= − sin kπ

k(k2 − 1)
(4.9)

c) In this part, we have to find out the maximum value of |g(k)|. It has removable discontinuities as
0, 1 and − 1 which can be filled in by assigning the limits to the function at those location. Let’s try
to find it out intuitively. Observe that the roots of the denominator are −1, 0 and 1. Clearly the limits
of the function at these points are π

2 , π and π
2 . At all other integers the function will be 0. I claim that

the function is maximum at k = 0 because it renders the largest functional value among the zeroes of the
denominator (poles). To understand this better, let’s plot the three functions in equation (42).

g(k) is the sum of these three curves which one can do qualitatively to obtain the following:

Therefore, the maximum value of g(k) is π.

d) The first zeroes of g(k) occur at k = −2 and 2 which can be easily inferred from the above graph.

e) First zeroes of f(x) are x = −π and π. I will follow the half width convention according to which
∆x = π and ∆k = 2. Therefore, the product of the two uncertainties is ∆x.∆k = 2π.
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4.1.3 Question 3

Given: ψ(x) =
√

2/L sin(πx/L) for 0 ≤ x ≤ L and ψ(x) = 0 otherwise
a)

ψ(x) =

∫ ∞

−∞
a(k)eikxdk =⇒ a(k) =

1

2π

∫ ∞

−∞
ψ(x)e−ikxdx

a(k) =
1

2π

∫ L

0

√
2

L
sin(πx/L)e−ikxdx

Writing π/L as k′, we have

a(k) =
1

2π

√
2

L

∫ L

0

eik
′x − e−ik′x

2i
e−ikxdx

=
1

4πi

√
2

L

∫ L

0
ei(k

′−k)x − e−i(k′+k)xdx

=
1

4πi

√
2

L

[
ei(k

′−k)L − 1

i(k′ − k)
+
e−i(k′+k)L − 1

i(k′ + k)

]
=

1

4π

√
2

L

[
e−ikl + 1

k′ − k
+
e−ikL + 1

k′ + k

]
=

1

4π(k′2 − k2)

√
2

L
[e−ikL + 1]2k′

=
k′

2π(k′2 − k2)

√
2

L
[e−ikL + 1]

b) For wavelength L, k = 2π/L. Thus,

a(2π/L) = − 1

2π

√
2

L

L

3π
[e−2πi + 1]

= −
√
2L

3π2

which is the required amplitude of the plane wave of wavelength L.

4.1.4 Question 4

a)

Figure 4.1:

b)
|e−α|x|| = 0.5
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e−α|x| = 0.5

−α|x| = ln(0.5) = −0.693

|x| = 0.693

α

x = ±0.693

α

Therefore full width at half maxima is:

∆x = 2× 0.693

α
=

1.386

α

c)

g(k) =

∫ ∞

−∞
f(x)eikxdx

g(k) =

∫ ∞

−∞
e−α|x|eikoxeikxdx

g(k) =

∫ ∞

−∞
ei(k+ko)x−α|x|dx

g(k) =

∫ 0

−∞
e(α+i(k+ko))xdx+

∫ ∞

0
e(−α+i(k+ko))xdx

g(k) =

(
e(−α+i(k+ko))x

−α+ i(k + ko)
− e−(α+i(k+ko))x

α+ i(k + ko)

)∣∣∣∣∞
x=0

g(k) =

(
1

α− i(k + ko)
+

1

α+ i(k + ko)

)
g(k) =

2α

α2 + (k + ko)2

d)

Figure 4.2:

e) The max height occurs when k + ko = 0. The value of this is 2/α. Hence, half of max value is 1/α

2α

α2 + (k + ko)2
=

1

α
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2α2 = α2 + (k + ko)
2

α2 = (k + ko)
2

(k + ko) = ±α

k = −ko ± α

Since uncertainty is full width at half maxima, we get:

∆k = 2α

Now,

∆x∆k =
1.386

α
× 2α

∆x∆k = 2.773

4.2 Heisenberg Uncertainty Principle

4.2.1 Question 1

First calculate de Broglie wavelength λ = h
p = h

γm0v
. Since it’s a free particle in both cases (i.e. zero

potential), we can take uncertainity in position to be equal to standard deviation i.e.

∆x = σ =
λ

2

(a) λ turns out to be 0.01
γ nm ≈ 0.01nm. Thus ∆x = 0.005nm.

(b) λ turns out to be 6.626×10−36

γ m ≈ 6.626× 10−36m. Thus ∆x = 3.313× 10−36m.

4.2.2 Question 2

We have that the proton is bound in the nucleus, of radius 7 ·10−15, and hence can take ∆x as the radius.
From the uncertainty relation given: ∆x∆p ≥ ℏ/2 we have to estimate the root mean square of the
velocity, or

√
< v2 >.

One thing to keep in mind is that since the proton is effectively bound in a sphere, it will have equal
negative and positive velocities, hence < p >= 0. This implies:

∆p2 =< p2 > − < p >2

∆p2 =< p2 >√
< p2 > = ∆p =

ℏ
2∆x√

< p2 > = ∆p =
ℏ

2 · 7 · 10−15√
< p2 > = 3.7663278 · 10−21

For the root mean square of the velocity now, we divide by the proton’s mass.
√
< v2 > = 2 · 3.7663278 · 10−21/mp

√
< v2 > = 4.503502 · 106

31



4.2.3 Question 3

Given, ∆x∆px ≥ ℏ
2 , and that we are considering a non-relativistic electron.

a) Since the electron is localized within a region of size a, this means that from the mean (approxi-
mately the center to a good approximation), the uncertainty in position ∆x = a

2 . From Heisenberg, this
leads to ∆px ≥ ℏ

a , from the mean momentum. Some people also use the uncertainity as a, which is just a
different convention. Thus, minimum Kinetic Energy for this non relativistic electron is

K.E.min =
∆p2x
2m

=
ℏ2

2ma2

b) We are given that ∆x = λ = h
p , and thus

∆px ≥ ℏp
2h

=
p

4π
≈ px

Here, since the electron is non relativistic, ∆vx ≈ vx. This is what we call an order analysis, that is, the
error in the velocity is of the same order as that of the velocity itself.

c)Let us use the exact version here, specifically

∆vx =
vx
4π

=

√
2E

m

1

4π
= 6.7× 105m/s

d) Let the motion of the electron be along the x direction, and passing through the hole leads to an
uncertainty along the y direction (also the x direction, but it is insignificant compared to vx). The Energy
as measured is before passing through, and hence gives us the velocity in the x direction as

vx =

√
2E

m

Using Heisenberg relation for uncertainty along the y direction, we get ∆y∆py ≥ ℏ
2 , and thus

∆vy ≈ vy =
ℏ

2ma

where a is the hole radius. Thus, using tan θ ≈ θ, we get

∆θ =
vy
vx

=
ℏ

2ma

√
m

2E
= 4.3× 10−5 rad

4.2.4 Question 4

Classically, for such a potential (V (x) = α|x|), we expect the ground state to be at x=0 and p=0 - corre-
sponding to being at rest at the minimum of potential energy position. However, quantum mechanically,
we cannot have x=0 and p=0 simultaneously. Therefore, consider an uncertainty ∆x in position about
x = 0, and an uncertainty in momentum about p = 0 as ∆p.

KE =
(∆p)2

2m
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PE = α∆x

Therefore, the total energy is:

E = KE + PE =
(∆p)2

2m
+ α∆x (4.10)

Here we use HUP, and assume ∆x∆p = ℏ (Note: we aren’t using ℏ/2 which is the minimum possible uncer-
tainty. ℏ is a good estimation for the general case and to get correct order of magnitude approximations.)

E =
ℏ2

2m(∆x)2
+ α∆x (4.11)

We minimize this energy to get the minimum total energy of a particle of mass m.

∂E

∂∆x
= −2

ℏ2

2m(∆x)3
+ α = 0

∆x =

(
ℏ2

mα

) 1
3

(4.12)

Substituting this in the expression for energy, we get the minimum energy is:

E =
ℏ2

2m

(mα
ℏ2
) 2

3
+ α

(
ℏ2

mα

) 1
3

=
3

2

(
ℏ2α2

m

) 1
3

(4.13)

Therefore A = 1.5, B =
(
ℏ2α2

m

) 1
3
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Chapter 5

Tutorial 5

5.1 Operators and Wave-functions

5.1.1 Question 1

Let us start with the concept of linearity. What is a linear operator?

Very simply, a linear operator is one which satisfies the following properties:

Â(f + g) = Âf + Âg

Â(cf) = cÂf
(5.1)

where the operator Â acts on the functions f, g and c is a scalar value.

We can condense both the above properties into the single definition given below:

Â(af + bg) = aÂf + bÂg (5.2)

To check if an operator A is Hermitian, take it’s conjugate transpose A† and check whether A = A†.
If the operators are not in matrix form, then remember the following facts while taking conjugate transpose:

x† = x,

(
d

dx
)† = − d

dx
,

i† = −ι

Therefore, in general, we can always use the following definition of a hermitian operator:∫
dxv∗(x)Âu(x) =

∫
dx(Âv(x))

∗
u(x) (5.3)

The above should hold for any two functions v(x), u(x) that you choose. This can help you prove
something isn’t hermitian by giving an example of simple functions (constants, f(x) = x etc) if you have
difficulty proving it isn’t hermitian otherwise. For proving it’s Hermitian, you need to show it holds for
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any choice of two functions. We work out the (b) as an example:∫ ∞

−∞
dxv∗(x)Âu(x) =

∫ ∞

−∞
dxv∗(x)

∂

∂x
u(x)

= v∗(x)

∫ ∞

−∞
dx

∂

∂x
u(x)−

∫ ∞

−∞
dx(

∂

∂x
v∗(x))u(x)

= −
∫ ∞

−∞
dx(

∂

∂x
v(x))∗u(x)

(5.4)

Here in the first step, we used integration by parts, in the second line we used the fact that the functions
are given to be well-behaving and vanish at x = ±∞. In the last line, we get the negative of the expres-
sion

∫
dx(Âv(x))

∗
u(x), so this operator is called ’anti-Hermitian’. Note that the momentum operator is

Hermitian, because when the conjugate of the operator is taken i → (−i), and this will cancel with the
negative sign appearing in the last step of this calculation.

(a) Not linear, not Hermitian

(b) Linear, not Hermitian (note: if multiplied by i it becomes Hermitian, but as it is, it is anti-Hermitian)

(c) Linear, not Hermitian

(d) Not linear, not Hermitian

(e) Linear, not Hermitian

(f) Not linear, not Hermitian

(g) Linear, Hermitian (integrate by parts twice)

5.1.2 Question 2

a) We are given two Hermitian operators Â and B̂ which satisfy the commutation relation [Â, B̂] = iĈ.
An operator is said to be Hermitian if it’s Hermitian conjugate is same as the operator itself. To
understand Hermitian conjugate, we can think of operators as square matrices and the functions they act
on as column vectors (the reason why this can be done is beyond the scope right now). The Hermitian
conjugate A† of a matrix A can be found in the following way:

• Take the complex conjugate of the matrix first, i.e., P → P ∗

• Then take the transpose, i.e., P ∗ → (P ∗)T

For example, the Hermitian conjugate of the matrix

P =

 1 2i 2
3 + 4i 2 5

1−
√
2i 4 3


is given by

P † =

 1 3− 4i 1 +
√
2i

−2i 2 4
2 5 3


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Since a transpose is involved in the process of finding the Hermitian conjugate, it satisfies the properties
of transpose! For example, (PQ)T = QTP T =⇒ (PQ)† = Q†P †. In the language of quantum mechanics,
Hermitian conjugate is defined as the following:∫ ∞

−∞
ϕ∗Âψdx =

∫ ∞

−∞
(B̂ϕ)∗ψdx

If for operators Â and B̂ the following expression holds true for all ψ, ϕ, then B̂ is the Hermitian conjugate
of the operator Â.

To show that the operator Ĉ is Hermitian, we just have to show that its Hermitian conjugate is the same
as itself.

Let’s take the Hermitian conjugate on both sides of the given commutation relation.

(iĈ)† = −iĈ† = [Â, B̂]†

= (ÂB̂ − B̂Â)†

= (ÂB̂)† − (B̂Â)†

= B̂†Â† − Â†B̂†

= B̂Â− ÂB̂ = −iĈ

We exploited the fact that Â and B̂ are both Hermitian in the last step. Therefore, we have Ĉ† = Ĉ.

Hence Proved!!!

b) In the above discussion, we also showed that (ÂB̂ − B̂Â)† = B̂Â− ÂB̂ =⇒ [Â, B̂]† = −[Â, B̂]. Hence,
[Â, B̂] is anti-Hermitian!

5.1.3 Question 3

Functions of operators are defined by their power series expansion. Given an operator Q̂, we have

eQ̂ ≡ 1 + Q̂+
1

2
Q̂2 +

1

3!
Q̂3 + ...

1

1− Q̂
≡ 1 + Q̂+ Q̂2 + Q̂3 + ...

ln(1 + Q̂) ≡ Q̂− 1

2
Q̂2 +

1

3
Q̂3 − 1

4
Q̂4 + ...

Now, we have K̂ to be a Hermitian operator, which means K̂† = K̂ and

eiK̂ = 1 + iK̂ − 1

2
K̂2 − i

3!
K̂3 + ...

=⇒ (eiK̂)† = 1− iK̂† − 1

2
(K̂†)2 +

i

3!
(K̂†)3 + ...

=⇒ (eiK̂)† = e−iK̂†
= e−iK̂

Note that

eÂeB̂ ̸= eÂ+B̂

= eÂ+B̂e[Â,B̂]/2
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(This is called the Baker-Campbell-Hausdorff formula)
But in our case, [K̂, K̂] = 0. Thus, we have

(eiK̂)†eiK̂ = e−iK̂eiK̂ = ei(−K̂+K̂) = I

Thus, eiK̂ is unitary if K̂ is Hermitian.

For the converse, we take a result which follows from the Spectral Theorem of Linear Algebra. This
says that for any unitary operator (matrix) Û , we have another unitary operator(matrix) V̂ such that

Û = V̂ D̂V̂ †

where D is a diagonal matrix comprising of the eigenvalues of Û . Now, a unitary operator (matrix) has
eigenvalues of unit modulus. To see this,

ϕ(x) = Ûψ(x) = λψ(x)

ϕ∗(x) = Û †ψ∗(x) = λ∗ψ∗(x)

1 =

∫ ∞

∞
ϕ∗(x)ϕ(x)dx =

∫ ∞

∞
|λ|2ψ∗(x)ψ(x)dx = |λ|2

Thus, D = diag(eiθ1 , eiθ2 , eiθ3 , ...). We now claim that

K̂ =
1

i
ln Û

is the required Hermitian operator (matrix). To see this,

K̂ =
1

i
ln Û =

1

i
ln(V̂ D̂V̂ †)

=
1

i
V̂ ln(D̂)V̂ † (expand as power series and use V̂ V̂ † = I)

= V̂ diag(θ1, θ2, θ3, ...)V̂
†

It isn’t hard to check that Û = eiK̂ . The Hermitian property of K̂ immediately follows from the fact that
θi are real. Thus, for any unitary operator (matrix), we have found a Hermitian operator that follows the
property. Is this operator unique?

5.1.4 Question 4

For the sake of clarity, I have written ’f(x)’ as just ’f ’, ’g(x)’ as just ’g’, and removed the ’dx’ term, but
ideally these should be written properly.

Recalling the definition of the hermitian adjoint of an operator:∫
f∗Ô†g =

∫
(Ôf)∗g

=

∫
g(Ôf)∗

=

∫
(g∗Ôf)∗

=

(∫
g∗Ôf

)∗
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∫
f∗Ô†g =

(∫
g∗Ôf

)∗

a) Substituting Ô with Â†: ∫
f∗(Â†)†g =

(∫
g∗Â†f

)∗

=

((∫
f∗Âg

)∗)∗

=

∫
f∗Âg∫

f∗(Â†)†g =

∫
f∗Âg

b) Substituting Ô with ÂB̂ in the original definition:∫
f∗(ÂB̂)†g =

∫
(ÂB̂f)∗g

Now let B̂f = h ∫
(ÂB̂f)∗g =

∫
(Âh)∗g

=

∫
h∗Â†g

Now let Â†g = k ∫
h∗Â†g =

∫
h∗k

=

∫
(B̂f)∗k

=

∫
f∗B̂†k

=

∫
f∗B̂†Â†g

=⇒
∫
f∗(ÂB̂)†g =

∫
f∗B̂†Â†g
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c) Substituting Ô with
(
Â+ Â†

)†
in the original equation:

LHS =

∫
f∗(Â+ Â†)†g =

∫ (
(Â+ Â†)f

)∗
g

=

∫ (
Âf + Â†f

)∗
g

=

∫
(Âf)∗g +

∫
(Â†f)∗g

=

∫
f∗Â†g +

∫
f∗Âg

=

∫
f∗
(
Â†g + Âg

)
=

∫
f∗(Â† + Â)g

=

∫
f∗(Â+ Â†)g

=⇒
∫
f∗(Â+ Â†)†g =

∫
f∗(Â+ Â†)g

or
(
Â+ Â†

)†
=
(
Â+ Â†

)
(This also proves the distributive property of the † operation.)

The other two are straightforward now that we have proved commutativity and distributivity over ad-
dition of the † and that its its own inverse:(

i
(
Â− Â†

))†
= (i)∗

(
Â− Â†

)†
= −i

(
Â† − (Â†)†

)
= −i

(
Â† − Â

)
= i
(
Â− Â†

)
(
i
(
Â− Â†

))†
= i
(
Â− Â†

)
And lastly, (

ÂÂ†
)†

= (Â†)†Â† = ÂÂ†

5.1.5 Question 5

We are looking for ϕ(x) and a number λ such that

Ĝϕ(x) = λϕ(x) =⇒ ιℏ
∂ϕ

∂x
= (λ−Bx)ϕ.

39



On rearranging and integrating this gives

ϕ(x) = ke−
ι
ℏ (λx−Bx2/2)

for an arbitrary constant k.
Putting the condition ϕ(a) = ϕ(−a) in the above expression for ϕ we get

e−ιλa/ℏ = eιλa/ℏ =⇒ e2ιλa/ℏ = 1 = eι2nπ =⇒ λn =
nπℏ
a
.

For each λn we have ϕn(x).

5.1.6 Question 6

We have Ψ1(x) and Ψ2(x) given as two eigenfunctions of P̂ with eigenvalues P1 and P2. Now for a
wavefunction consisting of a combination of these two eigenfuntions, the probability of being in one state
is the square of the normalised coefficient of that eigenfunction, i.e., here:

Probability(P1) =
(0.25)2

(0.25)2 + (0.75)2
= 0.1

Similarly Probability(P2) can be found to be 0.9, which gives us the net probability of measuring P1 or P2

as 1, which makes sense, since our original wavefunction was a combination of Ψ1(x) and Ψ2(x) only.

5.1.7 Question 7

Firstly, this is what we mean by the probability of finding a particle in a specific state, or that the some value
of an observable is measured as something with some probability. For a large enough number of experiments
N, if the probability of finding a given value for an observable is z, the number of measurements in which
z is found are z*N. Even though it does not matter for our final answer very much (think why!), let us
normalize the given wavefunction anyway. Also, since the measurement is at the time t = 0, we do not
need to add the time dependent part.

Φ(x) = Aexp

(
−x2

b2

)
∫ ∞

−∞
Φ∗(x)Φ(x)dx = 1

=⇒ A2

∫ ∞

−∞
exp

(
−2x2

b2

)
dx = 1

=⇒ A =

(
2

πb2

)1/4

Thus, the normalized wavefunction is

Φ(x) =

(
2

πb2

)1/4

exp

(
−x2

b2

)
We know that the probability of finding a particle between x and x+dx is given by P |{x,x+dx} = |Φ(x)|2dx,
and thus, if z is the number of measurements in which the particle would have been found in the infinitesimal
interval of x = b to b+ dx:

100

N
= |Φ(2b)|2dx

z

N
= |Φ(b)|2dx
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(Do you see now why A was unnecessary?).
Thus, we have:

100

z
=
exp(−8)

exp(−2)

=⇒ z = 100e6

Thus, the number of of measurements in which the particle would have been found in the infinitesimal
interval of x = b to b+ dx is ≈ 40343 measurements.

5.1.8 Question 8

We are given that ϕ1(x) and ϕ2(x) are two normalised eigenfunctions of the operator Â corresponding to
the eigenvalues a1 and a2, respectively. Similarly, u1(x) and u2(x) are two normalised eigenfunctions of
the operator B̂ corresponding to the eigenvalues b1 and b2, respectively. The relationships between ϕ1(x),
ϕ2(x) and u1(x), u2(x) are given to be:

ϕ1(x) = D(3u1(x) + 4u2(x))

ϕ2(x) = F (4u1(x)− Pu2(x))

We can easily find D using the fact that all the wavefunctions under discussion are normalised.∫ ∞

−∞
ϕ1(x)

∗ϕ1(x)dx = 1

|D|2
∫ ∞

−∞
(3u∗1(x) + 4u∗2(x))(3u1(x) + 4u2(x))dx = 1

|D|2
∫ ∞

−∞
9|u21(x)|+ 16|u2(x)|2 + 12(u1(x)

∗u2(x) + u2(x)
∗u1(x))dx = 1

Now we will use the fact that the eigenstates of an operator corresponding to the different eigenvalues are
orthogonal to each other. Thus, we have

∫∞
−∞ u1(x)

∗u2(x)dx and
∫∞
−∞ u2(x)

∗u1(x)dx both equal to zero!

So we get |D|2 × 25 = 1 =⇒ |D| = 1
5 . Now, since D can be complex, we can associate an arbitrary phase

part to it, i.e., D = 1
5e

iθD .

We can find P using orthogonality of ϕ1(x) and ϕ2(x).

D × F ×
∫ ∞

−∞
(3u∗1(x) + 4u∗2(x))(4u1(x)− Pu2(x))dx = 0

12− 4P = 0

P = 3

Obtaining F is again fairly straightforward. We just have to use the normalisation condition.∫ ∞

−∞
ϕ∗2ϕ2dx = 1

|F |2
∫ ∞

−∞
(4u1(x)

∗ − 3u2(x)
∗)(4u1(x)− 3u2(x))dx = 1

|F |2
∫ ∞

−∞
16|u1(x)|2 + 9|u2(x)|2 − 12(u1(x)

∗u2(x) + u2(X)∗u1(x))dx = 1

|F |2 × (25) = 1

F =
1

5
eiθF

41



The state of the particle at time t = 0 is given to be ψ(x) = 2
3ϕ1+

1
3ϕ2. If we make a measurement of A on

this system, the possible outcomes are only a1 and a2 because a quantum superposition collapses to one
of the constituent eigenstates upon observation. Clearly the given wave function ψ(x) is not normalised.
So let’s first normalise the wave function:

|N |2
∫ ∞

−∞
ψ∗(x)ψ(x)dx = 1

|N |2
(
4

9
+

1

9

)
= 1

|N | = 3√
5

Here we are free to choose any phase of N , because all we care about is its modulus squared, so let’s choose
0 for simplicity, i.e., N = 3√

5
. The normalised wave function is 1√

5
× (2ϕ1(x) + ϕ2(x)). The probability of

obtaining a1 is given by the mod square of the coefficient of the corresponding eigenfunction.

Probability of a1 =
4

5

Probability of a2 =
1

5

After the measurement of A, if the value obtained is a1, then it can be inferred that the system had collapsed
to the eigenstate ϕ1. Thus, measuring B in the system immediately after the previous measurement is
equivalent to measuring B in a system described by ϕ1. The only possible outcomes are, of course, b1 and
b2.

Probability of b1 =
9

25

Probability of b2 =
16

25

Now let’s consider the case in which the measurement of B is performed initially at t = 0. The possible
outcomes are b1 and b2. The state of the particle in terms of u1(x) and u2(x) is

ψ =
3√
5
× [

2

3
(
3

5
u1 +

4

5
u2)e

iθD +
1

3
(
4

5
u1 −

3

5
u2)e

iθF ]

=
3√
5
× [(

2

5
eiθD +

4

15
eiθF )u1 + (

8

15
eiθD − 1

5
eiθF )u2]

This implies

Probability of b1 =
9

5
|2
5
eiθD +

4

15
eiθF |2 = 52

125
+

48

175
cos(θD − θF )

Probability of b2 =
9

5
| 8
15
eiθD − 1

5
eiθF |2 = 73

125
− 48

175
cos(θD − θF )

If the outcome is b2, then this implies that the state of particle collapsed to u2(x), i.e., (
4
5ϕ1 −

3
5ϕ2)e

iθF .
Thus, the probabilities of a1 and a2 are as follows:

Probability of a1 =
16

25

Probability of a2 =
9

25
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Chapter 6

Tutorial 6

6.1 Free particle

6.1.1 Question 1

ψ(x) = A sin(kx) +B cos(kx)

= A

(
eikx − e−ikx

2i

)
+B

(
eikx + e−ikx

2

)
=

1

2

(
(B − iA)eikx + (B + iA)e−ikx

)
= Ceikx +De−ikx

(6.1)

where C = 1
2(B−iA) and D = 1

2(B+iA) Therefore, we have shown that sin(kx), cos(kx) basis is equivalent
to the eikx, e−ikx basis.

6.1.2 Question 2

We need to show that the given wave-function ψ doesn’t obey the time-dependent Schrodinger’s equation
for a free particle. The TDSE for a free particle is the following:

− ℏ2

2m

∂2ψ

∂x2
= iℏ

∂ψ

∂t

The given wave-function is ψ = A sin(kx− ωt) +B cos(kx− ωt). Thus, we have

∂ψ

∂t
= −ωA cos(kx− ωt) + ωB cos(kx− ωt)

∂2ψ

∂x2
= −k2A sin(kx− ωt)− k2B cos(kx− ωt)

Plugging these into TDSE for free particle gives

ℏ2k2

2m
A sin(kx− ωt) +

ℏ2k2

2m
B cos(kx− ωt) = −iℏωA cos(kx− ωt) + iℏωB sin(kx− ωt)

(
ℏ2k2

2m
A− iℏωB) sin(kx− ωt) + (

ℏ2k2

2m
B + iℏωA) cos(kx− ωt) = 0
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For the above equation to hold for all t, we need the coefficients of the sine and cosine terms to be zero
individually.

ℏ2k2

2m
A = iℏωB

ℏ2k2

2m
B = −iℏωA

The above two equations can hold simultaneously only if A = ±iB, i.e. it is a solution only for special
cases. Thus, the given wave-function is not a solution for all wave-functions of the given form.

6.1.3 Question 3

ϕ(x) = Aeikx +Be−ikx =⇒ ϕ∗(x) = Ae−ikx +Beikx

ϕ∗(x)ϕ(x) = A2 +B2 +AB(e2ikx + e−2ikx) = A2 +B2 + 2AB cos(kx)

Now,
A2 +B2 + 2AB ≥ A2 +B2 + 2AB cos(kx) ≥ A2 +B2 − 2AB

(A+B)2 ≥ ϕ∗(x)ϕ(x) ≥ (A−B)2 ≥ 0

6.1.4 Question 4

Here, the value of A does not matter (can you think why?), so let us look at ei(kx−ωt) term. We know
that such terms are plane waves. We also know that these terms are momentum eigenstates. (Remember
that delta functions are position eigenstates, and its fourier transform gives us eikx, which is a momentum
eigenstate.)

Lastly, we know that measuring the observable of a corresponding eigenstate of an operator gives us the
eigenvalue. Hence, the eigenvalue of eikx with respect to the momentum operator will give us the momen-
tum of a particle in this state. There are 2 ways to do this: (note: here, k = 5.02×1011, and ω = 8.00×1015)

a) p = hk
2π = 5.29× 10−23kg.m.s−1 (We already know this is true for free particles. Derivation in (b))

b) Apply the momentum operator −i h
2π

∂
∂x to the wavefunction to find the eigenvalue.

−i h
2π

∂Aei(kx−ωt)

∂x
=

(
−i h

2π

)
(ik)(Aei(kx−ωt)) =

(
hk

2π

)
(Aei(kx−ωt))

=⇒ the eigenvalue =
hk

2π
= 5.29× 10−23kg.m.s−1

Now to derive Energy,

a) E =
hω

2π
= 1.342× 10−19J

We can also do this by applying the Hamiltonian to the wave equation (we would need to find the mass of
the particle from the value of k and ω given, hence this is needless additional work)
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6.1.5 Question 5

(a) It is clear that the given function is continuous, differentiable once at x = ±a, vanishes as x = ±∞
thus it qualifies as a wavefunction.
(b) ∫ +a

−a
|A|2(1 + cos

(
πx

a

)
)2dx = 1 =⇒ 3a|A|2 = 1 =⇒ |A| = 1√

3a

(c)

∆x =

√
⟨x2⟩ − ⟨x⟩2

∆p =

√
⟨p2⟩ − ⟨p⟩2

We shall use ⟨Ô⟩ =
∫
ψ∗Ôψ and p̂ = −ιℏ ∂

∂x to claim that ⟨x⟩ = 0 (also noting that ψ(x) is symmetric
about x = 0) and that ⟨p⟩ = 0 (noting that sin(πxa ) is antisymmetric about the origin). Remaining non-zero
terms

⟨x2⟩ =
∫ a

−a
ψ∗x2ψ = |A|2 (2π

2 − 15)a3

2π2
=

(2π2 − 15)a2

6π2

⟨p2⟩ =
∫ a

−a
ψ∗p2ψ = −

∫ a

−a
ψ∗ℏ2

∂2

∂x2
ψ = |A|2ℏ2aπ

2

a2
=

ℏ2π2

3a2
.

The expressions for ∆x and ∆p are given by
√

(2π2−15)a2

6π2 and
√

ℏ2π2

3a2
respectively. Now you can verify that

(∆x∆p)2 ≈ 1.053157ℏ2
4 . Thus, ∆x∆p >

ℏ
2 .

(d) Classically allowed region is the one where E − V > 0 i.e. E > V . Putting this condition in the TISE,
we get the bounds for the classically allowed region.

6.1.6 Question 6

We are given ψ(x) = A( x
x0
)n · e−x/x0 and have to find V(x) such that ψ(x) is a stationary state, and its

given that V(x)=0 at extremal x values (plus/minus infinity). This means:

Ĥψ(x) = Eψ(x)

Where E is the energy of the stationary state.

Ĥψ(x) =

(
−ℏ2

2m

d2

dx2
+ V̂ (x)

)
ψ(x) = Eψ(x)

(
−ℏ2n(n− 1)

2mx2
+

ℏ2n
mxx0

+
−ℏ2

2mx20
+ V̂ (x)

)
ψ(x) = Eψ(x)

Since the first 3 terms on the LHS are not operators, we can take it to the RHS, and directly evaluate
V̂ (x). This gives us:

V̂ (x) = E +
ℏ2

2mx20
+

ℏ2n(n− 1)

2mx2
− ℏ2n
mxx0

For the second part we use the fact that V(x) = 0 at ininity, giving E = −ℏ2
2mx2

0
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Chapter 7

Tutorial 7

7.1 Particle in a box

7.1.1 Question 1

For a high energy particle in a particle in a box, we consider the nth eigenstate where n >> 1.

ψ(x) =
√

(
2

L
) sin(

nπx

L
)

The probability of finding it between a and b+ a is given by:∫ b+a

a
|ψ(x)|2dx

=
2

L

∫ b+a

a
sin2(

nπx

L
)dx

=
1

L

∫ b+a

a

(
1− cos(

2nπx

L
)

)
dx

=
b

L
−

(
sin(2nπ(b+a)

L )− sin(2nπaL )

2nπ/L

)

≈ b

L
lim n→ ∞

(7.1)

7.1.2 Question 2

Consider a particle confined to a 1D box of length L is in its ground state. We need the probability of
finding it between L/3 and 2L/3. The wave-function of the particle is as follows:

ψ0 =

√
2

L
sin(

πx

L
)

The probability of finding it in the space interval (L/3, 2L/3) is given by:
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P (
L

3
< x <

2L

3
) =

2

L

∫ 2L
3

L
3

sin2(
πx

L
)dx

=
2

L

∫ 2L
3

L
3

1− cos(2πxL )

2
dx

=
2

L
[
x

2
− L

4π
sin(

2πx

L
)]

2L
3
L
3

=
2

L
[
L

6
+

L

4π
(
√
3)]

=
1

3
+

√
3

2π

7.1.3 Question 3

a) We know that the stationary state wavefunctions are given by

ψ(x) =

√
2

a
sin
(nπx

a

)
, 0 ≤ x ≤ a

Now,

⟨X̂⟩n =

∫ a

0

2

a
x sin2

(nπx
a

)
dx =

a

2

This can be noticed just by observing the symmetry of |ψ(x)|2 about a/2

⟨X̂2⟩n =

∫ a

0

2

a
x2 sin2

(nπx
a

)
dx = a2

(
1

3
− 1

2π2n2

)

⟨P̂ ⟩n =

∫ a

0

2

a
sin
(nπx

a

)[
−iℏ ∂

∂x

(
sin
(nπx

a

))]
dx

=
−2iℏnπ
a2

∫ a

0
sin
(nπx

a

)
cos
(nπx

a

)
dx = 0

⟨P̂ 2⟩n =

∫ a

0

2

a
sin
(nπx

a

)[
ℏ2

∂2

∂x2

(
sin
(nπx

a

))]
dx

=
2ℏ2

a

(nπ
a

)2 ∫ a

0
sin2

(nπx
a

)
dx

=
2ℏ2n2π2

a3
a

2
=
n2π2ℏ2

a2

Classically, consider a particle continuously bouncing off of the walls of the container at x = 0 and
x = a. Now, as it’s travelling at a constant speed (potential does not vary within the box and hence force
is zero), it is equally likely to find the particle in any interval dx (let it be Pdx). From the symmetry of
the potential around x = a/2, we can conclude that the classical expectation value of the particle is a/2.
Now, as the particle is travelling at a constant speed, it is travelling to the right for an equal amount of
time as it is travelling to the left. Hence, we can conclude that the mean value of the classical momentum
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is 0. These match with the quantum mechanical expectation values.

Since the probability to find the particle in an interval dx is Pdx, where P is a constant,

⟨X̂2⟩ =
∫ a
0 Px

2dx∫ a
0 Pdx

=

∫ a
0 x

2dx∫ a
0 dx

=
a2

3

This agrees with the quantum mechanical expectation value as n → ∞. Now, if we know that the energy
of the particle is En = n2π2ℏ2/2ma2 (the stationary state energy eigenvalues), classically we expect p2/2m
to be equal to the kinetic energy. Thus, for the classical momentum p,

p2 = 2mEn =
n2π2ℏ2

a2

which agrees with the quantum mechanical expectation value.

7.1.4 Question 4

The ”goody-two-shoes” way to solve this problem is to find the n = 3 wavefunction for an infinite potential
well. Then find the spatial probability using the square of the modulus of the wavefunction and integrate
it between x = 0 and x = L/6

Here’s a more fun method. We use 3 conditions:

a) It is a known fact that the ground state of any 1D bound system has 0 nodes and that the mth
excited state has m nodes.

n = 3 corresponds to the 2nd excited state, hence there must be 2 nodes in this wavefunction

b) Since the eigenfunctions of the infinite well are sine or cos functions, and that we have 4 zeroes for
this function (2 nodes and 2 at the edges of the well used as boundary conditions), we can say that the
probabilities will be equal in each of the three sine quadrants of the wavefunction.
c) Now sine and cos functions are symmetric about their peak, hence each quadrant can be divided into 2
more zones where the total probability will be the same.

Hence the well is divided into 6 equal probability zones. Answer = 1/6

P.S.
There is another way to solve it without requiring to know that the wave function will be a sine or cosine
function. This involves changing the potential to an infinite number of periodic delta barriers, with con-
secutive barriers situated at a distance L from each other. (Which should give us the same answer as the
infinite well, repeated each time between two consecutive barriers)

Using just symmetry arguments and the fact that the answer must have 2 nodes, we will easily be able to
see that the function must have 6 equal probability zones. This method is often used while solving classical
waves problems
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7.1.5 Question 5

(a) Let us apply the TDSE in the region 0 ≤ x ≤ a and take the normalisation factor to be A:

ιℏ
∂ψ

∂t
= Ĥψ =⇒ Aω sin(πx/a)e−ιωt = − ℏ2

2m

∂2ψ

∂x2
+ V (x)ψ

=⇒ Aω sin(πx/a)e−ιωt = A(π/a)2 sin(πx/a)e−ιωt + V (x)A sin(πx/a)e−ιωt =⇒ ω = (π/a)2 + V (x)

This implies that V (x) = ω − (π/a)2 = constant in the region 0 ≤ x ≤ a and it is zero outside this region
since wavefunction vanishes there (since it’s a potential well).
(b) Normalization constant is

√
2/a. The required probability is∫ 3a/4

a/4
|ψ(x, t)|2dx =

∫ 3a/4

a/4
sin2(πx/a)

2/a

d
x =

1

2

(
a

2

)
2

a
=

1

2

7.1.6 Question 6

Given, initially the box has a length a, and the particle is in the ground state, ie we can take the wave
function of the particle to be:

ψ(x) =

√
2

a
sin(

πx

a
) from x = 0 to a

and ψ(x) = 0 otherwise

When the box size is suddenly increased, till x=4a:

ψnew(x) =

√
2

a
sin(

πx

a
) from x = 0 to a

and ψnew(x) = 0 otherwise

And the eigenstates of the box now are ϕn(x) =
√

2
4asin(

nπx
4a )

Now our ψ(x) can be written as a sum of the eigenstates of the new box, ie

ψ(x) =
∞∑
i=1

ciϕi(x)

Now the probability of measuring ψ(x) in the ith state is equal to c∗i ci. To get cj we can multiply ϕj(x)
†

and integrate (here from 0 to 4a since wavefunction 0 everywhere else).∫ 4a

0
ϕj(x)

†ψ(x) =
∞∑
i=0

∫ 4a

0
ciϕj(x)

†ϕi(x)

∫ 4a

0
ϕj(x)

†ψ(x) =

∞∑
i=0

ciδi,j = cj

For part a, we have to find c1:

c1 =

∫ 4a

0
ϕ1(x)

†ψ(x) =

∫ a

0
ϕ1(x)

†
√

2

a
sin(

πx

a
) +

∫ 4a

a
ϕ1(x)

† · 0
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c1 =

∫ a

0

√
2

4a
sin(

1πx

4a
)†
√

2

a
sin(

πx

a
)

c1 =
8
√
2

π15

Then probability of being in ground state is 128
225π2 or 0.05764.

Similarly for part b:

c2 =

∫ 4a

0
ϕ2(x)

†ψ(x) =

∫ a

0
ϕ2(x)

†
√

2

a
sin(

πx

a
) +

∫ 4a

a
ϕ2(x)

† · 0

c2 =

∫ a

0

√
2

4a
sin(

2πx

4a
)†
√

2

a
sin(

πx

a
)

c2 =
4

3π

Then probability of being in ground state is 16
9π2 or 0.1801265.

7.1.7 Question 7

Pretty general, you’ve seen this before. The region is from −L/2 < x < L/2 where V is 0, rest everywhere
its infinity. For this region, the TDSE simply becomes

− ℏ2

2m

d2ψ(x)

dx2
= Eψ(x)

Which clearly has the general solution (for positive energy):

ψ(x) = A sin(kx) +B cos(kx)

, with k =
√

2mE
ℏ2 . Since the wavefunction in the region with infinite potential is 0, and the wavefunction

is continuous, we have:

ψ(−L/2) = ψ(L/2) = 0

A sin(kL/2) +B cos(kL/2) = 0 = −A sin(kL/2) +B cos(kL/2)

Thus, A = 0 and cos(kL/2) = 0 or sin(kL/2) = 0 and B = 0. In the first case, kL/2 = (2n + 1)π/2, and

thus En = (2n+1)2ℏ2
2mL2 . In the second, kL/2 = nπ, and thus En = (2n)2ℏ2

2mL2 . Thus, joining them together, we
note that sin and cos functions alternate for the wavefunction, and the energy levels are the same as the
case with 0 < x < L, as expected.

7.1.8 Question 8

a) ∫ L

0
|ψ(x)|2dx = 1

50



∫ L

0
|ψ(x)|2dx = |A|2

∫ L

0

(
sin2(

nπx

L
+ sin2(

2nπx

L
) + 2 sin(

nπx

L
) sin(

2nπx

L
)

)
dx

= |A|2
(
L

2
+
L

2
+ 0

)
= |A|2L

(7.2)

This means |A| = 1√
L

b)

⟨x⟩ =
∫ L

0
ψ∗(x)xψ(x)dx

=
1

L

∫ L

0
x

(
sin2(

nπx

L
) + sin2(

2nπx

L
) + 2 sin(

nπx

L
) sin(

2nπx

L
)

)
=

1

L

∫ L

0
x

(
1− cos(2nπxL )

2
+

1− cos(2nπxL )

2
+ cos(

nπx

L
)− cos(

3nπx

L
)

)

=
1

L

L2

2
=
L

2

(7.3)

⟨x2⟩ =
∫ L

0
ψ∗(x)x2ψ(x)dx

=
1

L

∫ L

0
x2
(
sin2(

nπx

L
) + sin2(

2nπx

L
) + 2 sin(

nπx

L
) sin(

2nπx

L
)

)
=

1

L

∫ L

0
x2

(
1− cos(2nπxL )

2
+

1− cos(2nπxL )

2
+ cos(

nπx

L
)− cos(

3nπx

L
)

)

=
1

L

L3

3
=
L2

3

(7.4)

Therefore, (∆x)2 = ⟨x2⟩ − ⟨x⟩2 = L2

12

∆x = L

√
1

12

c)

⟨p⟩ =
∫ L

0
ψ∗(x)

(
−iℏ ∂

∂x

)
ψ(x)dx

=
−iℏ
L

∫ L

0

(
sin(

nπx

L
) cos(

nπx

L
) + sin(

2nπx

L
) cos(

2nπx

L
) + sin(

nπx

L
) cos(

2nπx

L
) + cos(

nπx

L
) sin(

2nπx

L
)

)
= 0

(7.5)
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⟨p2⟩ =
∫ L

0
ψ∗(x)

(
−ℏ2

∂2

∂x2

)
ψ(x)dx

= −ℏ2
∫ L

0
ψ∗(x)

(
∂2

∂x2

)
ψ(x)dx

=
ℏ2

L

∫ L

0

(
n2π2

L2
sin2(

nπx

L
) +

4n2π2

L2
sin2(

2nπx

L
) +

5n2π2

L2
sin(

nπx

L
) sin(

2nπx

L
)

)
dx

=
ℏ2

L

5n2π2

2L

=
5n2π2ℏ2

2L2

(7.6)

Therefore ∆p =
√

5
2
nπℏ
L

d) The given wavefunction is an equal superposition of 2 energy eigenstates. Therefore, probability of
measuring it in the first excited state (n = 2), is 1

2 .

7.1.9 Question 9

a) In all the boxes, the particles are in ground state. The ground state wave-function of a particle in a box
([0, L]) is

ϕ0 =

√
2

L
sin(

πx

L
)

The probability of finding the particle in the region [0, L/4] is

P (0 ≤ x ≤ L

4
) =

2

L

∫ L
4

0
sin2(

πx

L
)dx

=
1

4
− 1

2π
≈ 0.0908

Thus, we expect to find about 908 boxes (out of the 10,000 boxes) in which the particle is in the region
[0, L/4].

b) If we make a measurement right after the first measurement on the same box, the wave-function cannot
collapse to a position eigenvector because they are non-normalisable. Thus, the wavefunction collapses
to an eigenfunction having an eigenvalue close to the measurement, i.e., we can think of the resultant
state to be a Gaussian with a mean close to the measured value and a small spread. Thus, after the first
measurement, the spread will be small. Hence on making a second measurement would give a value which
will lie in the interval [0, L/4] as the spread won’t grow to a value larger than L/4 because the second
measurement is made immediately after the first.

7.1.10 Question 10

ψ(x, 0) =
2√
L
sin

(
3πx

2L

)
cos
(πx
2L

)
=

1√
L

[
sin
(πx
L

)
+ sin

(
2πx

L

)]
=

1√
2

[√
2

L
sin
(πx
L

)
+

√
2

L
sin

(
2πx

L

)]
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We know that the general solution to the Schrodinger equation for a particle in a box is given as a linear
combination of

ψn(x, t) =

√
2

L
sin
(nπx
L

)
e−iEnt/ℏ

where

En =
n2π2ℏ2

2mL2

Now, we have just found that ψ(x, 0) is a combination of the n = 1 and n = 2 energy eigenstates. Thus,
we can immediately write

ψ(x, t) =
1√
2

[√
2

L
sin
(πx
L

)
e−iE1t/ℏ +

√
2

L
sin

(
2πx

L

)
e−iE2t/ℏ

]
=

1√
2
[ψ1(x, t) + ψ2(x, t)]

Now, the probability of finding the electron between L/4 and L/2 is

P (t) =

∫ L/2

L/4
ψ∗(x, t)ψ(x, t)dx

=
1

L

∫ L/2

L/4

[
sin2

(πx
L

)
+ sin2

(
2πx

L

)
+ sin

(πx
L

)
sin

(
2πx

L

)
(e−i(E1−E2)t/ℏ + e−i(E2−E1)t/ℏ)

]
dx

=
1

L

∫ L/2

L/4

[
sin2

(πx
L

)
+ sin2

(
2πx

L

)
+ 2 sin

(πx
L

)
sin

(
2πx

L

)
cos

(
3π2ℏt
2mL2

)]
dx

=
1

L

[
L

8
+

L

4π
+
L

8
+

(4−
√
2)L

3π
cos

(
3π2ℏt
2mL2

)]

=
1

4
+

1

4π
+

(4−
√
2)

3π
cos

(
3π2ℏt
2mL2

)
Note that probability is not independent of time as the wavefunction is a superposition of two energy
eigenstates.

7.1.11 Question 12

(a) We will use here what is commonly called the WKB approximation. We know that

V (x) =


∞ x < 0
x
LV0 0 ≤ x ≤ L

∞ x > L

We want the energy eigenfunction with energy eigenvalue E1 < V0. Let us say that V (x0) = E1. Therefore,
for 0 ≤ x ≤ x0, V (x) < E1, and for x0 < x ≤ L, V (x) > E1. Therefore we have the TISE as

1

ψ(x)

d2ψ

dx2
=

{
−k(x)2 0 < x < x0

κ(x)2 x0 ≤ x < L
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where

k(x) =

√
2m(E1 − V (x))

ℏ2
,

κ(x) =

√
2m(V (x)− E1)

ℏ2
.

Thus, when 0 < x < x0 and x is not too close to x0, then k(x) is gradually varying in its neighborhood,
and we can treat it as such while solving TISE. Similarly when x0 ≤ x < L, and x is not too close to x0,
then κ(x) is gradually varying in its neighborhood, and we can treat it as such while solving TISE.

=⇒ ψ(x) ≈


A sin(k(x)x) 0 < x < x0 − ϵ

?? x0 − ϵ ≤ x ≤ x0 + ϵ

Be−κ(x)x x0 + ϵ < x < L.

Note that when x is close x0 we really cannot use these approximations, hence we cannot write the
wavefunction so simply in a neighborhood of ε around x0. Thus the main takeaway (and what you need
to write in the examination, you really don’t need the above explanation in that detail to be written
in the exam), is that the wavefunction is approximately sinusoidal for 0 < x < x0, and approximately
exponentially decaying in x0 < x < L, with these solutions being patched together using appropriate
boundary conditions. The graph thus will be approximately
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(b) Using similar logic as above, we have

sin(x) = Asin(k(x)x)

Since V (x) is increasing as we increase x, therefore the wavelength 2π will also increase as we increase x.
The graph is thus approximately
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Chapter 8

Tutorial 8

8.1 Particle in a finite box

8.1.1 Question 1

Label the regions from left to right as 1,2,3. In these regions, Schrodinger equation takes the form

d2ψ

dx2
= α2

1ψ, x < 0

d2ψ

dx2
+ k2ψ = 0, 0 < x < L

d2ψ

dx2
= α2

2ψ, L < x

k =

√
2mE

ℏ2
α1 =

√
2m(V1 − E)

ℏ2
α2 =

√
2m(V2 − E)

ℏ2

The solutions in the different regions are:

ψ = Aeα1x, x < 0

ψ = B cos kx+ C sin kx, 0 < x < L

ψ = De−α2x, L < x

We now demand continuity of the wavefunction and it’s derivative at x = 0 and x = L. Thus,

A = B, De−α2L = B cos kL+ C sin kL

Also,
Aα1 = Ck, −Dα2e

−α2L = −Bk sin kL+ Ck cos kL

Divide the fourth equation by α2, add it to the second equation and replace B and C with A to get

A cos kL

(
1 +

α1

α2

)
= A sin kL

(
k

α2
− α1

k

)
Cancelling A and rearranging, we get the condition for quantization:

tan kL =
k(α1 + α2)

k2 − α1α2
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As V1 → ∞, α1 → ∞. Thus, the condition become

tan kL = − k

α2

Graph out the solutions to get allowed k values and hence allowed E values.

8.1.2 Question 2

A particle of mass m is confined in a finite potential well of length L and barrier potential height V0. This
case was discussed in the lecture in great detail. The wavefunction can be expressed in a piece-wise fashion
as follows:

ψ(x) =


Aeαx x < 0

C sin(kx) +D cos(kx) 0 < x < L

He−αx x > L

with α =
√

2m(V0 − E))/ℏ and k =
√
2mE/ℏ.

Boundary conditions:

1. ψ(0−) = ψ(0+) =⇒ A = D

2. ψ′(0−) = ψ′(0+) =⇒ αA = kC

3. ψ(L+) = ψ(L−) =⇒ C sin(kL) +D cos(kL) = He−αL

4. ψ′(L−) = ψ′(L+) =⇒ k(C cos(kL)−D sin(kL)) = −Hαe−αx

From (1) and (2), we have A = D and C = α
kC. On making these substitutions in (3) and (4), we obtain:

α

k
A sin(kL) +A cos(kL) = He−αL

k(
α

k
A cos(kL)−A sin(kL)) = −αHe−αL

Dividing the above two equations gives

α cos(kL)− k sin(kL)

α sin(kL) + k cos(kL)
= −α

k

After some simplification using trigonometric identities, the above equation can be re-written as the fol-
lowing:

tan(kL) =
2(αk )

1 + (αk )
2

The number of solutions of the above equation is equal to the total number of solutions of the following
equations:

tan(
kL

2
) =

α

k

− cot(
kL

2
) =

α

k
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Define k0 =
√
2mV0/ℏ. Using this, we can rewrite α/k as

α

k
=

√
V0
E

− 1 =

√
(k0L/2)2

(kL/2)2
− 1 = f(

kL

2
)

So we need to find out the combined number of roots of the following equations in some variable u (= kL/2):

tan(u) = f(u)

− cot(u) = f(u)

We are given that
√

mV0L2

2ℏ2 = 1 =⇒ kL/2 = 1.

Clearly, the system has only one bound state!

8.1.3 Question 3

Label the regions from left to right as 1,2,3. In these regions, Schrodinger equation takes the form

d2ψ

dx2
= α2ψ, x < −L/2

d2ψ

dx2
+ k2ψ = 0, −L/2 < x < L/2

d2ψ

dx2
= α2ψ, L/2 < x

where

k =

√
2mE

ℏ2
α =

√
2m(V0 − E)

ℏ2
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The solutions in the different regions are:

ψ = Aeαx, x < −L/2

ψ = Beikx + Ce−ikx, −L/2 < x < L/2

ψ = De−αx, L/2 < x

We now demand continuity of the wavefunction and it’s derivative at x = −L/2 and x = +L/2. Thus,

Ae−α/2 = Be−ikL/2 + CeikL/2

Deα/2 = BeikL/2 + Ce−ikL/2

Also,
Aαe−α/2 = ik(Be−ikL/2 − CeikL/2)

−Dαeα/2 = ik(BeikL/2 − Ce−ikL/2)

Dividing the first two sets of equations and comparing it with the division of the second set of equations,
we get the condition

B = ±C

B = +C corresponds to the symmetric state as ψ ∝ cos kx in region 2 and B = −C corresponds to the
antisymmetric states as ψ ∝ sin kx in region 2.

For the symmetric states
It immediately follows that A = D. Substituting this in the third boundary condition and comparing with
the first boundary condition, we get

αB(e−ikL/2 + eikL/2) = ikB(e−ikL/2 − eikL/2)

from which we get the condition

tan kL/2 =
α

k

For the antisymmetric states
It immediately follows that A = −D. Substituting this in the third boundary condition and comparing
with the first boundary condition, we get

αB(e−ikL/2 − eikL/2) = ikB(e−ikL/2 + eikL/2)

from which we get the condition

tan kL/2 =
−k
α

b)
The ground state is a symmetric wavefunction and hence the condition

tan kL/2 =
α

k

applies. Now given E1 = 4.45eV , we can get k =
√
2mE/ℏ2. Thus, we get kL/2 = 0.1718. Now,

tan kL/2 =

√
V0 − E

E

Thus,
V0 = E tan kL/22 + E =

59



Figure 8.1: The potential is sketched in black, and the ground state in pencil

Question 4

Part a

for part a, we can see from the image that it looks very similar to the infinite well, and is symmetric, we
can take hint from this and take the ground state to have
1) No nodes (ie probability will only be non zero is the potential is infinite and nowhere else, which means
the wavefunction will not cross zero)
and
2) the maximum probability of finding the particle will be at the centre of the potential. These two
assumptions give us a bell shaped wavefunction, that is zero for |x| > L, exponentially decaying for
L > |x| > L

2 and sinusoidal for L
2 > |x|

Part b

For a finite potential well, we know that the ground state eigenfunction must satisfy the following condition:√
2π2mL2V0

h2
− η2 = η × tan(η) where η =

kL

2

=⇒
√

4.35× 10−12 − η2 = η × tan(η)

but tan(η) ≈ η

=⇒ 4.35× 10−12 = η2 + η4

η = 2.1× 10−6

=⇒ k = 4.2× 10−6m−1

=⇒ E = 1.1× 10−49J

8.1.4 Question 5

(a) We can write the potential as

V (x) =


U x < −L
0 −L ≤ x ≤ L

U x > L
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We are looking for a bound state, i.e. an energy eigenstate whose energy eigenvalue E < V (±∞) =⇒ V <
U . Let us first solve the TISE differential equation regionwise which we will patch together by imposing
boundary conditions

1

ψ(x)

d2ψ

dx2
=


α2 x < −L
−k2 − L ≤ x ≤ L

α2 x > L

ψ(x) =


Aeαx +Be−αx x < −L
C cos kx+D sin kx −L ≤ x ≤ L

Feαx +Ge−αx x > L

Again, B = F = 0 to prevent ψ(x) from blowing up at ±∞. Since we are looking for symmetric solutions,
we have A = G, D = 0. Imposing boundary conditions, we have
Continuity and differentiability at x = L.

Ae−αL = C cos(kL)

Aαe−αL = kC sin(kL).

Continuity and differentiability at x = L.

Ae−αL = C cos(kL)

Aαe−αL = kC sin(kL).

We have two redundant equations, so the assumption of symmetric solution was consistent. Let us write

tan kL =
α

k
.

This is the quantization condition we were looking for.
(b) As we know, the ground state is a symmetric one, hence the ground state energy is the lowest k and thus

lowest E satisfying tan(kL) = α
k . Writing k =

√
2mU
ℏ , we have α

k =

√
k20L

2

k2L2 − 1. We also have k0L = 2.298.

Thus we can now solve this equation numerically to get kL = 1.081 = =⇒ E = ℏ2k2
2mL2 = 1.1eV.

(c) As is clear from the picture, as we increase k0, a new bound state is possible whenever the x intercept

of
√

k0L
kL − 1 crosses a multiple of π. Thus the number of bound states is ceiling( (k0L)π ) = ceiling(

√
2mUL
ℏπ ).

Question 6

We are given a potential well with a barrier in between of height V0 = E in the middle. We can divide the
well into 5 regions;
1: from −∞ to -2L where potential is ∞ and hence wavefunction is 0
2: from -2L to -L, where potential is 0
3: from -L to L where potential is a constant V0 and given wavefunction is a constant C
4: from L to 2L, where potential is 0
5: from 2L to ∞ where potential is ∞ and hence wavefunction is 0

In region 4 where V̂ (x) = 0:
Ĥψ(x) = Eψ(x)

−ℏ2

2m

d2

dx2
ψ(x) = Eψ(x)
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Hence ψregn4(x) = Aeikx +Be−ikx for some constants A and B and k = ℏ
√

E
2m .

Similarly in region 2, ψregn2(x) = Eeikx + Fe−ikx for some constants E and F.
We need to now enforce the boundary conditions:

ψregn2(−2L) = ψregn4(2L) = 0

ψregn2(−L) = ψregn4(L) = C

ψ
′
regn2(−L) = ψ

′
regn4(L) = 0

This gives us A=F, B=E and
Aeik2L +Be−ik2L = 0

B = −Aeik4L

and with the third condition:
ikAeikL − ikBe−ikL = 0

B = Aeik2L

using this and the previous value of B we get eik2L = −eik4L or eik2L = −1 = eiπ which means k = (2n+1)π
2L

(where n is some integer)
so B = -A using this at x=L:

AeikL −Ae−ikL = C

A =
−iC

2sin(kL)
=

−iC
2

|A|2 = |C|2

4

Lastly we should normalise ψ(x) to find out C (we can assume C is real without loss of generality):∫ 2L

−2L
ψ†(x)ψ(x) =

∫ −L

−2L
ψ†
regn2(x)ψregn2(x) +

∫ L

−L
C†C +

∫ 2L

L
ψ†
regn4(x)ψregn4(x) = 1

It turns out the first and third term in the integral are equal, which gives us :

4L|A|2 + |A|2

k
(1− cos(2kL)) + 2L|C|2 = 1

4L
|C|2

4
+ 2L

|C|2

π4
2 + 2L|C|2 = 1

3L|C|2 + L
|C|2

π
= 1

|C|2 = 1

L(3 + π−1)

C = ±

√
1

L(3 + π−1)

For part c, given L = 1 A and m = me. The two lowest k values are π
2L and 3π

2L (ignore -ve since E is k

squared). Also we have k = ℏ
√

E
2m or E = 2k2m

ℏ2 . Which means:

Esmallest =
π2m

2ℏ2L2
= 2.5228 · 1077eV
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E2ndsmallest =
9π2m

2ℏ2L2
= 2.27058 · 1078eV

For part d, k= π
2L , and we have psi(x) such that (for a known C, as above):

-2L to -L : ψregn2(x) =
iC
2 e

i0.5πx/L + −iC
2 e−i0.5πx/L = −Csin(πx2L)

-L to L : ψregn3(x) = C

L to 2L : ψregn4(x) =
−iC
2 ei0.5πx/L + iC

2 e
−i0.5πx/L = Csin(πx2L)

Then to calculate expectation values, use x̂ψ(x) = xψ(x) and p̂ψ(x) = −iℏ d
dxψ(x):

< x >=

∫
ψ(x)†xψ(x) =

∫ −L

−2L
ψ(x)†regn2xψregn2(x) +

∫ L

−L
ψ(x)†regn3xψregn3(x) +

∫ 2L

L
ψ(x)†regn4xψregn4(x)

< x >= 0

< x2 >=

∫
ψ(x)†x2ψ(x) =

∫ −L

−2L
ψ(x)†regn2x

2ψregn2(x)+

∫ L

−L
ψ(x)†regn3x

2ψregn3(x)+

∫ 2L

L
ψ(x)†regn4x

2ψregn4(x)

< x2 >= 2C2L3(1.5− 3

π2
) =

2L2

(3 + π−1)
(1.5− 3

π2
)

< x2 >≈ 0.72087L2

< p >= −
∫
ψ(x)†iℏ

d

dx
ψ(x)

= −
∫ −L

−2L
ψ(x)†regn2iℏ

d

dx
ψregn2(x)−

∫ L

−L
ψ(x)†regn3iℏ

d

dx
ψregn3(x)−

∫ 2L

L
ψ(x)†regn4iℏ

d

dx
ψregn4(x)

< p >= 0

< p2 >= −
∫
ψ(x)†ℏ2

d2

dx2
ψ(x)

= −
∫ −L

−2L
ψ(x)†regn2ℏ

2 d
2

dx2
ψregn2(x)−

∫ L

−L
ψ(x)†regn3ℏ

2 d
2

dx2
ψregn3(x)−

∫ 2L

L
ψ(x)†regn4ℏ

2 d
2

dx2
ψregn4(x)

< p2 >=
−π2ℏ2

4L2(3 + π−1)
≈ −8.26942 · 10−69

L2

From the calculated quantities, ∆x∆p ≈ 7.7 · 10−35 which is greater than h
4π ≈ 5.27286 · 10−35 and hence

satisfies the uncertainty principle.
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Chapter 9

Tutorial 9

9.1 Scattering problems

9.1.1 Question 1

For x > 0 the Schrödinger equation is given by(
d2

dx2
− k22

)
ψ2(x) = 0 (x ≥ 0)

where k22 = 2m (V0 − E) /ℏ2. This equation’s solution is

ψ2(x) = Ce−k2x +Dek2x (x ≥ 0).

Since the wave function must be finite everywhere, and since the term ek2x diverges when x → ∞, the
constant D has to be zero. Thus, the complete wave function is

Ψ(x, t) =

{
Aei(k1x−ωt) +Be−i(k1x+ωt) x < 0
Ce−k2xe−iωt x ≥ 0

Here,
k1 =

√
2mE/ℏ2

We know that probability density is |ψ(x)|2. Therefore, the required condition is:

|ψ(x0)|2

|ψ(0)|2
=

1

e

Which gives:
e−2k2x0 = e−1

Thus x0 =
1

2k2
Taking ∆x = x0,

∆p ≥ ℏ
2x0

∆E ≥ (∆p)2

2m
The minimum value of this is:

∆E =
( ℏ
2x0

)2

2m
=

ℏ2k22
2m

= (V0 − E)

Therefore, we cannot be sure that the total energy is indeed less than V0.
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9.1.2 Question 2

9.1.3 Question 3

Label the regions from left to right as 1,2. Let the potential barrier be V0 for x > 0. In the two regions,
time independent Schrodinger equation takes the form

d2ψ

dx2
+ k2ψ = 0, x < 0

d2ψ

dx2
= α2ψ, 0 < x

k =

√
2mE

ℏ2
α =

√
2m(V0 − E)

ℏ2
The solutions in the different regions are:

ψ = A cos kx+B sin kx, x < 0

ψ = Ce−αx, 0 < x

Probability of detecting the electron at x = 0 is |C|2. Probability of detecting the electron at x > 0 is
|C|2e−2αx. Thus,

|C|2e−2αx

|C|2
= e−2αx =

1

2

Thus,

x =
ℏ

2
√
2m(V0 − E)

ln 2

Now, E = 3eV , V0 = 7eV , m = 9.1× 10−31kg. Substituting, we get

x = 2.127Å

9.1.4 Question 4

The Schrödinger equation outside the barrier is given by(
d2

dx2
+ k2

)
ψ(x) = 0

where k2 = 2mE/ℏ2.

The Schrödinger equation inside the barrier is given by

d2

dx2
ψ(x) = 0

The latter equation is just the ODE for linear equations. The former we have dealt with in free particle
questions. Setting the left edge of the barrier as the origin (choice of origin does not affect the answer),
the solution is of the form:

ψ(x) =


Ae−ikx +Beikx x < 0
Cx+D 0 < x < L
Fe−ikx +Geikx x > L

Constraints:
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1. Particle moves from the left hand side =⇒ F = 0

2. Wavefunction is continuous at x = 0 =⇒ A+B = D

3. Wavefunction is continuous at x = L =⇒ CL+D = GeikL

4. Wavefunction is differentiable at x = 0 =⇒ (B −A)ik = C

5. Wavefunction is differentiable at x = L =⇒ C = GeikL

a)

Now transmission coefficient is defined as |GB |2 Solving the 5 simultaneous equations for G/B, we get:

T =
4

4 + k2L2
=

4ℏ2

4ℏ2 + 2mEL2

b)

T =
1

2

=⇒ 4

4 + k2L2
=

1

2

=⇒ 8 = 4 + k2L2

=⇒ 4 = k2L2 =⇒ kL = ±2

=⇒ 2πL = ±2λ

=⇒ λ = ±πL

9.1.5 Question 5

First of all, supposing the given wavefunctions are correct, try to find a relation between the constants
using boundary conditions. Continuity at x = L yields

Ae−ιk1L = Be−ιk2L.

Differentiability at x = L yields
Ak1e

−ιk1L = Bk2e
−ιk2L

Thus, it implies
k1 = k2 =⇒ V = 0

which is clearly not the case. Hence the claims are incorrect.
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9.1.6 Question 6

a) Label the regions from left to right as 1,2,3. In these regions, Schrodinger equation takes the form

d2ψ

dx2
+ k21ψ = 0, x < 0

d2ψ

dx2
+ k22ψ = 0, 0 < x < d

d2ψ

dx2
+ k23ψ = 0, d < x

k1 =

√
2mE

ℏ2
k2 =

√
2m(E − 5V0)

ℏ2
k3 =

√
2m(E − nV0)

ℏ2

The solutions in the different regions are:

ψ = Aeik1x +Be−ik1x, x < 0

ψ = Ceik2x +De−ik2x, 0 < x < d

ψ = Eeik3x, d < x

Since the transmission coefficient is 0.75,

k3|E|2

k1|A|2
= 0.75

Given E = 9V0, we can find k2d = π. We now demand continuity of the wavefunction and it’s derivative
at x = 0 and x = d. Thus, at x = 0,

A+B = C +D, k1(A−B) = k2(C −D)

At x = d,
−(C +D) = Eeik3d, −k2(C −D) = Ek3e

ik3d

as eiπ = e−iπ = −1. For expressing A in terms of E,

(A+B) = −Eeik3d, k1(A−B) = −Ek3eik3d

Adding the two equations, we get

2A = −Eeik3d
(
1 +

k3
k1

)
Taking the modulus squared on both sides,

4|A|2 = |E|2||eik3d||1 + k3
k1

|2

If n > 9, then k3 is purely imaginary. If we proceed in that direction, we will get that there is no such
n that satisfies the relation (Check!). If n < 9, k3 is real and moreover positive as we cannot have a left
moving wave in region 3. Thus, using the relation between |E|2 and |A|2, we get(

1 +
k3
k1

)2

=
16k3
3k1

=⇒ k3
k1

= 3,
1

3
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Substituting the expressions for k3 and k1 and solving, we get√
9− n

9
= 3 =⇒ n = −72 ,

√
9− n

9
=

1

3
=⇒ n = 8

b) From the four boundary conditions, we have

2A = −Eeik3d
(
1 +

k3
k1

)
2C = −Eeik3d

(
1 +

k3
k2

)
2D = −Eeik3d

(
1− k3

k1

)
2B = −Eeik3d

(
1− k3

k1

)
We thus get

B =
A(k1 − k3)

k1 + k3

C =
Ak1(k2 + k3)

k2(k1 + k3)

D =
Ak1(k2 − k3)

k2(k1 + k3)

E = −2Ak1e
−ik3d

k1 + k3

c) For the case n = −72, k3 = 3k1. Thus, B will have a phase factor of eiπ with respect to A. For the
case n = 8, k3 = k1/3. Thus, B will not have any phase compared to A. Since B is the amplitude for the
reflected wave, the discussion above gives the relative phase between the incident and reflected waves.
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Chapter 10

Tutorial 10

10.1 SHM and 2D/3D solutions

10.1.1 Question 3

We know that the energy levels of a quantum harmonic oscillator are:

En =

(
n+

1

2

)
ℏω, n = 0, 1, 2.3, ...

a) For the transition from n = 3 to n = 2, the wavelength of the photon emitted is

λ =
hc

∆E
=
hc

ℏω
=

2πc

ω
= 2πc

√
m

k
= 128.8µm

b) The ground state energy is

E0 =
1

2
ℏω =

ℏ
2

√
k

m
= 7.7× 10−22J

10.1.2 Question 4

a) Effective mass µ of a diatomic molecule is µ = m/2

=⇒ ω =

√
k

µ
=

√
2k

m
= 1.16× 1015Hz

b) From the energy formula E = (n+ 0.5)ℏω:
The energy between consecutive energy states is ℏω = 0.766eV
The wavelength is calculated by λ = 2πc

ω = 1.625× 10−6m

10.1.3 Question 5

(a) Use separation of variables
ψ(x, y) = ψx(x)ψy(y).

Put this in TISE
Hψ(x, y) = Eψ(x, y)
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=⇒ − ℏ2

2mψx(x)

∂2ψx(x)

∂x2
+

1

2
kx2 = −(− ℏ2

2mψy(y)
+

1

2
ky2 − E).

LHS is purely a fn of x and RHS of y, and the expression has to be true for all x, y. This is only possible
if LHS = RHS = some constant, which we can write as Ex ≤ E

− ℏ2

2mψx(x)

∂2ψx(x)

∂x2
+

1

2
kx2 = Ex,

− ℏ2

2mψy(y)

∂2ψy(y)

∂y2
+

1

2
ky2 = E − Ex.

We already know the solutions to these 2 equations as

Ex = (nx +
1

2
)ℏω,

E − Ex = (ny +
1

2
)ℏω.

=⇒ E = (nx + ny + 1)ℏω.

(b) The degeneracy of level E = (n + 1)ℏω will be the number of solutions to nx + ny = n which we
can easily see will be n+ 1(nx = 0, 1, 2, ..., n). Therefore the degeneracy of energy E will be E

ℏω .

10.1.4 Question 6

(a) We follow the same procedure as above. Since the potentials are additive, that is V (x, y) = V (x)+V (y),
we can proceed with variable separation. Thus, we get:

ψ(q1, q2) = ψq1(q1)ψq2(q2).

Separating the LHS and RHS into constants as above, we obtain the following equations:

− ℏ2

2mψq1(q1)

∂2ψq1(q1)

∂q21
+

1

2
mω2

1q
2
1 = Eq1

− ℏ2

2mψq2(q2)

∂2ψq2(q2)

∂q22
+

1

2
mω2

2q
2
2 = Eq2

Lucky for us, we already have the exact solution to the above in terms of the Hermite polynomials:

ψq1(q1)
(n1) = (

mω1

πℏ
)1/4

1√
2n1(n1)!

Hn1

(√
mω1

ℏ
q1

)
e−

mω1q
2
1

2ℏ

ψq2(q2)
(n2) = (

mω2

πℏ
)1/4

1√
2n2(n2)!

Hn2

(√
mω2

ℏ
q2

)
e−

mω2q
2
2

2ℏ

with the eigenvalues:

Eq1 =

(
n1 +

1

2

)
ℏω1

Eq2 =

(
n2 +

1

2

)
ℏω2
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Clearly, the (n1, n2) eigenstate is

ψ(q1, q2) = ψq1(q1)
(n1)ψq2(q2)

(n2)

, with the energy

E = (n1ω1 + n2ω2 +
(ω1 + ω2)

2
)ℏ

, with the general E eigenstate being the superposition of these LI basis.
(b) When ω1

ω2
= 3

4 , we need to find integer solutions to the equation:

3n1 + 4n2 = n

. The ground state is the one with n1 = 0, n2 = 0, and it is unique, with no degeneracy. The same happens
for (1, 0) and (0, 1) states. The first time the degeneracy occurs is during the first solution of the above
equation, for the 2 states of (n1, n2) = (4, 0) and (n1, n2) = (0, 3), with the total energy being E = 31

8 ℏω2

10.1.5 Question 7

We have been given a particle in a potential well mω2x2/2, and the expression of the wave-function in
terms of β:

ψ(x) = (
2β√
3
)(
β

π
)
1/4

x2 exp(−βx2/2)

a) To find the dimension of β we can use the fact that the expression in the exponential must be
dimensionless, ie [β] = dim(x2)−2 = [L]−2.
Besides this note:
dim(ω) = [T ]−1

dim(ℏω) = dim(E) = [M ] [L][T ]

2

dim(ℏ) = [M ] [L]
2

[T ]

dim(m) = [M]
With this information we can make a pretty educated guess as to how to express β in terms of m, ω and ℏ:

[β] =
mω

ℏ

We could also have arrived at the same answer by comparing the given expression with the expression of
eigenstates that we know, especially the exponential part.

b) We can do this part in two ways as well, either by finding the coefficients of the parts by multiplying
by ψ∗

0 or ψ∗
2 and integrating , where:

a =

∫
ψ∗
0(x)ψ(x)

b =

∫
ψ∗
2(x)ψ(x)

or, the second way, by using the expression we have and knowledge or Hermite polynomials. We know (or
one can google) H0(x) = 1, H1(x) = x and H2(x) = x2 − 1. Hence βx2 = H2(

√
βx) +H0(

√
βx)

also note the expressions of the eigenstate is as:

ψn(x) =
1√
2nn!

(
mω

πℏ
)1/4e−

mωx2

2ℏ Hn(

√
mω

ℏ
x)
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where Hn(x) is the Hermite polynomial.
and from part a, we can say β = mω

ℏ , ie :

ψn(x) =
1√
2nn!

(
β

π
)1/4e−

βx2

2 Hn(
√
βx)

Using this, we can write out:

ψ(x) = (
2√
3
)

(
β

π

1/4 (
(
√
βx)

2
− 1
)
e−βx2/2 +

β

π

1/4

e−βx2/2

)

ψ(x) = (
2√
3
)
(√

222!ψ2(x) +
√
200!ψ0(x)

)
ψ(x) = (

4
√
2√
3
)ψ2(x) + (

2√
3
)ψ0(x)

In the question, this expression isn’t properly normalised hence after normalisation b = 4
√
2√
3

1√
( 4

√
2√
3
)2+( 2√

3
)2

= 2
√
2

3 and a = 1
3 . Also expectation value of energy < E >= a2E0 + b2E2 where E0 = ℏω/2 and

E2 = 5ℏω/2, so
< E >=

1

9
ℏω/2 +

8

9
5ℏω/2

< E >= ℏω
(
41

18

)
10.1.6 Question 9

a) The total potential experienced by the particle will be the harmonic oscillator potential plus the elec-
tromagnetic potential as measured from the x = 0 position. Thus

V (x) =
1

2
mω2x2 − E0qx

b) To put the problem in a more familiar form, we complete the squares

V (x) =
1

2

(
mω2x2 − 2E0qx+

(
E0q√
mω2

)2
)

− 1

2

(
E0q√
mω2

)2

=⇒ V (x) =
1

2

(√
mω2x− E0q√

mω2

)2

− E2
0q

2

2mω2

=⇒ V (x) =
1

2
mω2

(
x− E0q

mω2

)2

− E2
0q

2

2mω2

This is nothing but the potential of a harmonic oscillator shifted in position by E0q/mω
2 and shifted

in energy by E2
0q

2/2mω2

d) Let a = E0q/mω
2 and V0 = E2

0q
2/2mω2. The Time-Independent Schrodinger equation is

− ℏ2

2m

∂2

∂x2
ψ(x) +

1

2
mω2

(
x− E0q

mω2

)2

ψ(x) = (E + V0)ψ(x)
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Making the change of variable x− a→ x′, we have

− ℏ2

2m

∂2

∂x′2
ϕ(x′) +

1

2
mωx′2ϕ(x′) = (E + V0)ϕ(x

′)

where ϕ(x′) = ψ(x′ + a). We already know the solutions to this eigenvalue equation.

E + V0 =

(
n+

1

2

)
ℏω, n = 0, 1, 2.3, ...

Thus, the stationary state energies are:

En =

(
n+

1

2

)
ℏω − E2

0q
2

2mω2
, n = 0, 1, 2.3, ...

The ground state energy is then just

E0 =
ℏω
2

− E2
0q

2

2mω2

e) By the from of the Schrodinger equation, ϕ(x′) is just the wavefunction of the usual quantum harmonic
oscillator. We know that the square of these wavefunctions are symmetric about the origin x′ = 0. Hence,

⟨X̂ ′⟩ = ⟨X̂ − a⟩ = 0

⟨X̂⟩ = E0q

mω2
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Chapter 11

Tutorial 11

11.1 Statistical Mechanics

11.1.1 Question 1

No of ways to choose 5 balls out of 59 is 59C5.

No of ways to choose 1 ball out of 35 is 35C1

No of ways to choose 6 balls = 59C5 ×35 C1

11.1.2 Question 2

We have 20 coins and we flip them all together.

(a) If all the coins are independent, then the outcome of each flip can either be ”HEAD” or ”TAIL”
with equal probability. Thus, two possibilities corresponding to every coin. Thus, the total number of
outcomes is 220.

(b) We need the number of ways for obtaining 12 heads and 8 tails. So we need to choose 12 (or 8)
coins out of the 20 and assign them heads (or tails) and the rest automatically get tails (or heads). Thus,
out answer is

(
20
12

)
.

(c) Here we need to find the number of probability of obtaining 12 heads and 8 tails regardless of the

order. It will be simply
(208 )
220

.

11.1.3 Question 3

Let the number of particles in the 3 energy levels be (n0, nE , n2E). Given that the total available energy
is 3E, we have nE + 2n2E = 3. We also have n0 + nE + n2E = 3. Subtracting the two equations we
have n0 = n2E . From this we get that the only two distributions among the energy levels are (0, 3, 0) and
(1, 1, 1). As these levels have degeneracy 2, 10, 20

No. of microstates of (0, 3, 0) =

(
10

3

)
= 120
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No. of microstates of (1, 1, 1) =

(
2

1

)(
10

1

)(
20

1

)
= 400

As each microstate is equally likely, the probability of the distributions are

Prob. of (0, 3, 0) = 0.23

Prob. of (1, 1, 1) = 0.77

11.1.4 Question 4

For a 3D anisotropic oscillator, We can split the hamiltonian:

H = Hx(ωx) +Hy(ωy) +Hz(ωz)

where

Hx(ωx) =
−ℏ2

2m

∂2

∂x2
+

1

2
mω2

xx
2 (and similarly for y and z)

Now, we rewrite the potential given in the question to make it obvious that the question refers to a 3D
anisotropic oscillator:

V (x, y, z) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2

with
ωx = ωy = ω

ωz = 2ω

This gives us an energy:

E =

(
nx +

1

2

)
ℏωx +

(
ny +

1

2

)
ℏωy +

(
nz +

1

2

)
ℏωz

=

(
nx +

1

2
+ ny +

1

2
+ 2nz + 1

)
ℏω

= (nx + ny + 2nz + 2) ℏω

where ni is a non negative integer

a) Ground state is 2ℏω
b) Degeneracy of 7ℏω equals the number of solutions to

7ℏω = (nx + ny + 2nz + 2)ℏω

=⇒ 5 = (nx + ny + 2nz)

There are 12 solutions
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11.1.5 Question 5

(a) nE + 3n3E + 5n5E + 9n9E = 9 and n0 + nE + n3E + n5E + n9E = 4. We thus have the possibilities

(n0, nE , n3E , n5E , n9E) = (3, 0, 0, 0, 1) with probability proportional to 1× 4!

3!
= 4

(n0, nE , n3E , n5E , n9E) = (1, 1, 1, 1, 0) with probability proportional to 1× 4! = 24

(n0, nE , n3E , n5E , n9E) = (1, 0, 3, 0, 0) with probability proportional to 1× 4!

3!
= 4.

Thus the probabilities for these cases are 4
4+24+4 = 0.125, 24

4+24+4 = 0.75, 4
4+24+4 = 0.125 repectively.

(b)
(n0, nE , n3E , n5E , n9E) = (3, 0, 0, 0, 1) with probability proportional to 1

(n0, nE , n3E , n5E , n9E) = (1, 1, 1, 1, 0) with probability proportional to 1

(n0, nE , n3E , n5E , n9E) = (1, 0, 3, 0, 0) with probability proportional to 1.

Thus the probabilities for each of these cases are 1
1+1+1 = 1/3.

(c)
(n0, nE , n3E , n5E , n9E) = (3, 0, 0, 0, 1) with probability proportional to 0

(n0, nE , n3E , n5E , n9E) = (1, 1, 1, 1, 0) with probability proportional to 1

(n0, nE , n3E , n5E , n9E) = (1, 0, 3, 0, 0) with probability proportional to 0.

Thus the probabilities for these cases are 0, 1, 0 respectively.

11.1.6 Question 6

Given 3 electrons, and ten energy states (with spin degeneracy ie, each energy state can take 2 electrons
only).
Two ways to fill up the electrons: 2 electrons in one energy state, and third in another(spin up or down),
or all 3 electrons in different states.
Though this can be simply visualised by considering it to be a situation of selecting 3 seats from 20 available
seats :
C3
20 = 1140

Where as the other case = C3
10 * 3! = 720

(C3
10 ways to select seats and 3! ways to arrange people in those seats)

11.1.7 Question 8

(a) Classical particles: all 5 can be accommodated in the n = 0 level. This is the lowest energy state and
is the ground state having energy 5

2ℏω

Identical bosons: all 5 can be accommodated in the n = 0 level. This is the lowest energy state and
is the ground state having energy 5

2ℏω

Identical fermions: Pauli’s exclusion principle forbids all 5 from occupying the same energy level. A
maximum of two fermions can be accommodated in any energy level. Therefore, we can have 2 in the
n = 0 state, n = 1 state each and one in the n = 2 state. Therefore, it has energy 13

2 ℏω. Considering spin,
this ground state has a degeneracy of 2.
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(b)Classical particles: Any one of the particles can be excited to the n = 1 level, and the remaining
four can be accommodated in the n = 0 level. Since classical particles are distnguishable, we can choose
the excited particle in 5 ways, leading to 5 distinct microstates unlike in the bosonic case.

Identical bosons: Any one of the bosons can be excited to a higher n = 1 level, and the remaining four can
be accommodated in the n = 0 level. Since they are indistinguishable, there is only one microstate.

Identical fermions: There are two possible excitations. An electron in the n = 1 state can be excited
to the n = 2 state or the electron in the n = 2 state can be excited to the n = 3 state. This results in 2
possible microstates. If we now consider that the unpaired electron has spin degeneracy, we get 4 possible
microstates.

(c) At low temperatures, the lower energy states are more populated for bosons than classical particles.
This can be inferred from the fact that there are more microstates for a given energy for classical particles
in higher energy levels since they are distinguishable.
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