
PH-107 (2021): Tutorial Sheet 1
* marked problems will be solved in the Wednesday tutorial class

Photoelectric Effect:

1. *In a photoelectric effect experiment, excited hydrogen atoms are used as light source.
The light emitted from this source is directed to a metal of work function Φ. In this
experiment, the following data on stopping potentials (Vs), for various Balmer lines of
hydrogen, is obtained.

n = 4 → n = 2, transition line : VS = 0.43 V

n = 5 → n = 2, transition line : VS = 0.75 V

n = 6 → n = 2, transition line : VS = 0.94 V

a) What is the work function Φ of the metal in eV?
b) What is the stopping potential (in Volts) for Balmer line of the shortest wavelength?
c) What will be the photocurrent corresponding to Paschen series (ending in n = 3 )
transitions?

2. In an experiment on photoelectric effect of a metal, the stopping potentials were found to
be 4.62 V and 0.18 V for λ1 = 1850 Å and λ2 = 5460 Å, respectively. Find the value of
Planck’s constant, the threshold frequency and the work function of the metal.

3. A monochromatic light of intensity 1.0 µW/cm2 falls on a metal surface of area 1 cm2 and
work function 4.5 eV. Assume that only 3% of the incident light is absorbed by the metal
(rest is reflected back) and that the photoemission efficiency is 100 % (i.e. each absorbed
photon produces one photo-electron). The measured saturation current is 2.4 nA.

(a) Calculate the number of photons per second falling on the metal surface.

(b) What is the energy of the incident photon in eV ?

(c) What is the stopping potential ?

4. In a photoelectric experiment, a photocathode is illuminated separately by two light
sources of same intensity but different wavelengths, 480 nm and 613 nm. The result-
ing photocurrent is measured as a function of the potential difference (V ) between the
cathode and the anode. Observed photocurrent for three values of V is given below

V current (nA)
480 nm 613 nm

−0.1 76.3097 64.7039
−0.2 67.6194 44.4078
−0.3 58.9291 24.1118

(a) Using this data, obtain the work function of the photocathode and the cut off wave-
length.

(b) What is the maximum kinetic energy of the electron for λ = 480 nm? What should
be the wavelength of light to emit electrons half this kinetic energy?
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(c) When the photocathode material is changed, it is found that the cut off frequency is
1.2 times the cut off frequency of the old material. What is the work function of the
new material?

5. Light of wavelength 2000 Å falls on a metal surface. If the work function of the metal is
4.2 eV, find the kinetic energy of the fastest and the slowest emitted photoelectrons. Also
find the stopping potential and cutoff wavelength for the metal.

Black Body Radiation:

1. * According to Planck, the spectral energy density u(λ) of a blackbody maintained at
temperature T is given by

u(λ, T ) =
8πhc

λ5

1

exp
(

hc
λkBT

)
− 1

where λ denotes the wavelength of radiation emitted by the blackbody.

(a) Find an expression for λmax at which u(λ, T ) attains its maximum value (at a fixed
temperature T ). λmax should be in terms of T and fundamental constants h, c and
kB.

(b) Expressing λmax as α
T
, obtain an expression for umax(T ) in terms of α, T and the

fundamental constants.

2. The earth rotates in a circular orbit about the sun. The radius of the orbit is 140×106

km. The radius of the earth is 6000 km and the radius of the sun is 700,000 km. The
surface temperature of the sun is 6000 K. Assuming that the sun and the earth are perfect
black bodies, calculate the equilibrium temperature of the earth.

3. (a) Given Planck’s formula for the energy density, obtain an expression for the Rayleigh
Jeans formula for U(ν, T ).

(b) For a black body at temperature T , U(ν, T ) was measured at ν = ν0. This value is
found to be one tenth of the value estimated using Rayleigh Jeans formula. Obtain an
implicit equation in terms of hν/kBT

(c) Solve the above equation to obtain the value of hν/kBT , up to the first decimal place.

4. Using appropriate approximations, derive Weins’ displacement law from Planck’s formula
for energy density of black body radiation.

Compton Scattering:

1. A photon of energy hν is scattered through 90◦ by an electron initially at rest. The
scattered photon has a wavelength twice that of the incident photon. Find the frequency
of the incident photon and the recoil angle of the electron.

2. Find the energy of the incident x-ray if the maximum kinetic energy of the Compton
electron is m0c

2/2.5.
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3. Show that a free electron cannot absorb a photon so that a photoelectron requires bound
electron. However, the electron can be free in Compton Effect. Why?

4. Two Compton scattering experiments were performed using x-rays (incident energies E1

and E2 = E1/2). In the first experiment, the increase in wavelength of the scattered
x-ray, when measured at an angle θ = 45◦, is 7×10−14 m. In the second experiment, the
wavelength of the scattered x-ray, when measured at an angle θ = 60◦, is 9.9×10−12 m.

(a) Calculate the Compton wavelength and the mass (m) of the scatterer.

(b) Find the wavelengths of the incident x-rays in the two experiments.

5. Find the smallest energy that a photon can have and still transfer 50% of its energy to an
electron initially at rest.

6. *γ-rays are scattered from electrons initially at rest. Assume the it is back-scattered and
its energy is much larger than the electron’s rest-mass energy, E ≫ mec

2.
(a) Calculate the wavelength shift
(b) Show that the energy of the scattered beam is half the rest mass energy of the electron,
regardless of the energy of the incident beam
(c) Calculate the electron’s recoil kinetic energy if the energy of the incident radiation is
150MeV

7. In Compton Scattering, show that the maximum energy of the scattered photon will be
2m0c

2, irrespective of the energy of the incident photon. Find the value of θ0, the angle
at which the maximum energy occurs.

8. * In a Compton scattering experiment (see figure), X-rays scattered off a free electron
initially at rest at an angle θ(> π/4)), gets re-scattered by another free electron, also
initially at rest.

(a) If λ3 − λ1 = 1.538× 10−12 m, find the value of θ.

(b) If λ2 = 68 × 10−12 m , find the angle at which the first electron recoils due to the
collision.
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PH-107 (2021): Tutorial Sheet 2
* marked problems will be solved in the Wednesday tutorial class

de Broglie Wavelength:

1. Calculate the wavelength of the matter waves associated with the following:

(a) A 2000 kg car moving with a speed of 100 km/h.

(b) A 0.28 kg cricket ball moving with a speed of 40 m/s.

(c) An electron moving with a speed of 107 m/s.

Compare in each case the result with the respective dimension of the object. In which
case will it be possible to observe the wave nature.

2. Show that the Bohr’s angular momentum quantization leads to the formation of standing
waves by the electrons along the orbital circumference in hydrogen atom.

3. Calculate the de-Broglie wavelength (in nm) for a photon, an electron and a neutron each
with an energy of 5 keV (for electron and neutron, the energy refers to non-relativistic
kinetic energy). Take me = 500 keV/c2 and mn = 1000 MeV/c2.

4. *Thermal kinetic energy of a hydrogen atom is ∼ kBT and the radius is ∼ r1 (= 0.53 Å,
radius of the n = 1 Bohr orbit). Find the temperature at which its de Broglie wavelength
has a value of 2r1. Take the mass of the hydrogen atom to be that of a proton.

Interference, Diffraction, YDSE, Davison-Germer experiment :

1. * Buckminsterfullerene are soccer-like balls (called buckyballs) made up of 60 carbon
atoms (C60). A double slit experiment is performed using these buckyballs travelling at a
velocity of 100 m/sec (slit width = 150 nm and the separation between the slits and the
screen, D = 1.25 m from the slits).

(a) Find the de Broglie wavelength of the buckyball.

(b) Find the distance between the maxima of the resultant interference pattern. Treat
the buck balls as point like objects.

(c) The size of the buckyballs is ∼10 Å. How does the size of the ball compare with the
distance between the neighboring maxima of the interference patterns? Is the size of
C60 likely to affect the visibility of the interference fringes? Find the initial velocity
of C60 for which the interference fringes start to become difficult to detect?
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2. Consider two plane waves, one with a wave vector, k⃗1 = (2π/λ)(x⃗+ y⃗ + z⃗), and the other
with k⃗2 = (2π/λ)z⃗. For λ = 500 nm, (a) find the resultant wave due to the interference
of these two waves, (b) calculate the intensity and (c) analyze the interference pattern in
the xy-plane, i.e. the condition for maxima and minima.

3. In a Young’s double slit experiment, the slit separation is 0.8 mm and the observing plane
is 1.6 m away from the two slits.

(a) Plot the intensity pattern at the observing plane.

(b) If the distance between the two consecutive maxima is 5 mm, find the wavelength of
the light.

(c) When one of the slits is covered by a transparent thin film, the central maximum is
seen to shift by 2.2 fringes. If the refractive index of the film is 1.4, find the thickness
of the film.

(d) Now the two slits are illuminated by a light containing two wavelengths, 450 nm and
600 nm. What is the least order at which a maximum of one wavelength will fall
exactly on a minimum of the other?

4. *In a double-slit experiment with a source of monoenergetic electrons, detectors are placed
along a vertical screen parallel to the y-axis to monitor the diffraction pattern of the
electrons emitted from the two slits. When only one slit is open, the amplitude of the
electrons detected on the screen is ψ1(y, t) = A1e

−i(ky−ωt)/
√
1 + y2, and when only the

other is open the amplitude is ψ2(y, t) = A2e
−i(ky+πy−ωt)/

√
1 + y2, where A1 and A2 are

normalization constants. Calculate the intensity detected on the screen when
(a) both slits are open and a light source is used to determine which of the slits the electron
went through and
(b) both slits are open and no light source is used.
(c) Plot the intensity registered on the screen as a function of y for cases (a) and (b).

5. *In a Davisson-Germer experiment, electrons having energy of 54eV were bombarded
normally over copper crystal. The diffracted beam was recorded using a detector and
when the intensity of the diffracted electrons was plotted against the angle with the
normal of the surface and the 1st maxima was observed at an angle of θ = 35◦.
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(a) Calculate the spacing between the atoms on the copper surface.

(b) What other angles are possible for a maxima?

(c) If the energy of incident electrons were increased by 3 times. Find the location of
first maxima.

(d) How many more intensity peaks (maxima’s) will be observed as the angle is further
increased?

6. Sodium Chloride (NaCl) crystal is made up of cubes of edge length d, as shown in the
figure. Each cube contains a full Na ion at its body center, which is not shown in the
figure. In a Davisson-Germer experiment, performed using electrons of kinetic energy 40
eV, the NaCl crystal gives a first order (n = 1) diffraction peak at 20.11◦.

(a) Compute d

(b) Compute the number of NaCl molecules in the given cube.

(c) Given the density and the molecular weight of NaCl to be 2.17 g/cm3 and 58.44
g/mol, respectively, compute Avogadro’s number.
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PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 3

* marked problems will be solved in the Wednesday tutorial class

Wave packets: Group and Phase Velocity

1. Consider two wave functions ψ1(y, t) = 5y cos 7t and ψ2(y, t) = −5y cos 9t, where y and t

are in meters and seconds, respectively. Show that their superposition generates a wave
packet. Plot it and identify the modulated and modulating functions.

2. *Two harmonic waves which travel simultaneously along a wire are represented by

y1 = 0.002 cos (8.0x− 400t) & y2 = 0.002 cos (7.6x− 380t)

where x, y are in meters and t is in sec.

(a) Find the resultant wave and its phase and group velocities

(b) Calculate the range ∆x between the zeros of the group wave. Find the product of
∆x and ∆k ? [Ans.: vp = 50 m/s, vg = 50 m/s, ∆x = 5π m, ∆x∆k = 2π]

3. The angular frequency of the surface waves in a liquid is given in terms of the wave number
k by ω =

√
gk + Tk3/ρ, where g is the acceleration due to gravity, ρ is the density of the

liquid, and T is the surface tension (which gives an upward force on an element of the
surface liquid). Find the phase and group velocities for the limiting cases when the surface
waves have:
(a) very large wavelengths and
(b) very small wavelengths.

4. *Calculate the group and phase velocities for the wave packet corresponding to a rela-
tivistic particle.

5. Consider an electromagnetic (EM) wave of the form A exp(i[kx − ωt]). Its speed in free
space is given by c = ω

k
= 1/

√
ϵ0µ0, where ϵ0, µ0 is the electric permittivity, magnetic

permeability of free space, respectively.

(a) Find an expression for the speed (v) of EM waves in a medium, in terms of its
permittivity ε and permeability μ.

(b) Suppose the permittivity of the medium depends on the frequency, given by ϵ =

ϵ0

(
1− ω2

p

ω2

)
where ωp is a constant called the plasma frequency, find the dispersion

relation for the EM waves in a medium. wp is a constant and is called the plasma
frequency of the medium (assume µ = µ0).
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(c) Consider waves with ω = 3ωp. Find the phase and group velocity of the waves. What
is the product of group and phase velocities?

6. The dispersion relation for a lattice wave propagating in a 1-D chain of atoms of mass m
bound together by a force constant β is given by ω = ω0 sin

(
ka
2

)
, where ω0 =

√
4β/m and

a is the distance between the atoms.

(a) Show that the medium is non- dispersive in the long wavelength limits.

(b) Find the group and phase velocities at k = π/a. [Ans.: 0, ωoa/π]

7. *Consider a squre 2-D system with small balls (each of mass m) connected by springs. The
spring constants along the x- and y-directions are βx and βy, respectively. The dispersion
relation for this system is given by

−ω2m+ 2βx (1− cos kxax) + 2βy (1− cos kyay) = 0

where k⃗ = kxî + ky ĵ is the wave vector and ax,ay are the natural distances between the
two successive masses along the x-, y-directions, respectively. Find the group velocity and
the angle that it makes with the x-axis
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PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 4

Only "*" to be solved in the tutorials

Fourier Transform

1. *If ϕ(k) = A(a− |k|), |k| ≤ a, and 0 elsewhere. Where a is a positive parameter and A is
a normalization factor to be found.
(a) Find the Fourier transform for ϕ(k)
(b) Calculate the uncertainties ∆x and ∆p and check whether they satisfy the uncertainty
principle.

2. A wave packet is of the form f(x) = cos2
(
x
2

)
(for−π ≤ x ≤ π) and f(x) = 0 elsewhere

(a) Plot f(x) versus x.
(b) Calculate the Fourier transform of f(x), i.e. g(k) =

∫+∞
−∞ f(x)e−ikxdx ?

(c) At what value of k, |g(k)| attains its maximum value?
(d) Calculate the value(s) of k where the function g(k) has its first zero.
(e) Considering the first zero(s) of both the functions f(x) and g(k) to define their spreads
(i.e. ∆x and ∆k), calculate the uncertainty product ∆x.∆k.

3. *A wave function ψ(x) is defined such that ψ(x) =
√
2/L sin(πx/L) for 0 ≤ x ≤ L and

ψ(x) = 0 otherwise.
(a) Writing ψ(x) =

∫∞
−∞ a(k)eikxdk, find a(k).

(b) What is the amplitude of the plane wave of wavelength L constituting ψ(x) ?

4. A wave packet is of the form f(x) = exp(−α|x|) · exp (ik0x) ( for −∞ ≤ x ≤ ∞) where
α, k0 are positive constants.
(a) Plot |f(x)| versus x.
(b) At what values of x does |f(x)| attain half of its maximum value? Consider the full
width at half maxima (FWHM) as a measure of the spread (uncertainty) in x, find ∆x

(c) Calculate the Fourier transform of f(x), i.e. g(k) =
∫+∞
−∞ f(x)eikxdx

(d) Plot g(k) versus k.
(e) Find the values of k at which g(k) attains half its maximum value? Using the same
concept of FWHM as in part (b), calculate ∆k ? Hence calculate the product ∆x.∆k

[ Given :
∫∞
0 e−(α−ik)xdx = 1

α−ik

]
Heisenberg Uncertainty Principle

1. Estimate the uncertainty in the position of (a) a neutron moving at 5× 106 m s−1 and
(b) a 50 kg person moving at 2 m s−1.
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2. A lead nucleus has a radius 7× 10−15 m. Consider a proton bound within nucleus. Using
the uncertainty relation ∆p.∆r ≥ h̄/2, estimate the root mean square speed of the proton,
assuming it to be non-relativistic. (You can assume that the average value of p2 is square
of the uncertainty in momentum.)

3. For a non-relativistic electron, using the uncertainty relation ∆x∆px = h̄/2

(a) Derive the expression for the minimum kinetic energy of the electron localized in a
region of size ’ a ’.
(b) If the uncertainty in the location of a particle is equal to its de Broglie wavelength, show
that the uncertainty in the measurement of its velocity is same as the particle velocity.
(c) Using the expression in (b), calculate the uncertainty in the velocity of an electron
having energy 0.2keV

(d) An electron of energy 0.2keV is passed through a circular hole of radius 10−6 m. What
is the uncertainty introduced in the angle of emergence in radians? (Given tan θ ∼= θ )

4. A particle of mass m moves in a one-dimensional potential V (x) = α|x| where α > 0.
Using Heisenberg’s uncertainty relation, the minimum total energy of the particle is found
to have the form Emin = AB1/3. Find A and B.
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PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 5

* marked problems will be solved in the Wednesday tutorial class

Operators and Wave function

1. Which of the operators Ai defined in the following are linear operators? Which of these
are hermitian? All the functions ψ(x) are well behaved functions vanishing at ±∞.

(a) Â1ψ(x) = ψ(x)2

(b) Â2ψ(x) =
∂ψ(x)
∂x

(c) Â3ψ(x) =
∫ x
a ψ (x′) dx′

(d) Â4ψ(x) = 1/ψ(x)

(e) Â5ψ(x) = −ψ(x+ a)

(f) Â6ψ(x) = sin(ψ(x))

(g) Â7ψ(x) =
∂2ψ(x)
∂x2

2. (a) If Â and B̂ are Hermitian and [Â, B̂] = ÂB̂ − B̂Â = iĈ, prove that Ĉ is Hermitian

(b) An operator is said to be anti-Hermitian if Ô† = −Ô. Prove that [Â, B̂] is anti-
Hermitian.

3. * Prove that if K̂ is a Hermitian operator, exp
(
iK̂

)
is an unitary operator, and if Û is

an Unitary operator, then there is an operator K such that Û = exp
(
i K̂

)
, and this K̂ is

Hermitian.

4. If Â and B̂ are operators, prove

(a) that
(
Â†

)†
= Â

(b) that (ÂB̂)† = B̂†Â†

(c) that Â+ Â†, i
(
Â− Â†

)
, and that ÂÂ† are Hermitian operators.

5. An operator is given by

Ĝ = ih̄
∂

∂x
+Bx

where B is a constant. Find the eigen function ϕ(x). If this eigen function is subjected to
a boundary condition ϕ(a) = ϕ(−a) find out the eigen values.

6. Ψ1(x) and Ψ2(x) are the normalized eigen functions of an operator P̂ , with eigen values P1

and P2 respectively. If the wave function of a particle is 0.25Ψ1(x) + 0.75Ψ2(x) at t = 0,
find the probability of observing P1.
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7. * Consider a large number (N) of identical experimental set-ups. In each of these, a single
particle is described by a wave function Φ(x) = A exp(−x2/b2) at t = 0, where A is
the normalization constant and b is another constant with the dimension of length. If a
measurement of the position of the particle is carried out at time t = 0 in all these set-ups,
it is found that in 100 of these, the particle is found within an infinitesimal interval of
x = 2b to 2b + dx. Find out, in how many of the measurements, the particle would have
been found in the infinitesimal interval of x = b to b+ dx.

8. * An observable A is represented by the operator Â. Two of its normalized eigen functions
are given as Φ1(x) and Φ2(x), corresponding to distinct eigenvalues a1 and a2, respectively.
Another observable B is represented by an operator B̂. Two normalized eigen functions of
this operator are given as u1(x) and u2(x) with distinct eigenvalues b1 and b2, respectively.
The eigen functions Φ1(x) and Φ2(x) are related to u1(x) and u2(x) as, Φ1 = D(3u1+4u2);
Φ2 = F (4u1 − Pu2) At time t = 0, a particle is in a state given by 2

3
Φ1 +

1
3
Φ2.

(a) Find the values of D, F and P.
(b) If a measurement of A is carried out at t = 0, what are the possible results and what
are their probabilities ?
(c) Assume that the measurement of A mentioned above yielded a value a1. If a measure-
ment of B is carried out immediately after this, what would be the possible outcomes and
what would be their probabilities ?
(d) If instead of following the above path, a measurement of B was carried out initially at
t = 0, what would be the possible outcomes and what would be their probabilities ?
(e) Assume that after performing the measurements described in (c), the outcome was
b2. What would be the possible outcomes, if A were measured immediately after this and
what would be the probabilities ?
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PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 6

* marked problems will be solved in the Wednesday tutorial class

Free particle

1. *Show that
ψ(x) = A sin(kx) +B cos(kx)

and
ψ(x) = Ceikx +De−ikx

are equivalent solutions of TISE of a free particle. A, B, C and D can be complex numbers.

2. Show that
Ψ(x, t) = A sin(kx− ωt) +B cos(kx− ωt)

does not obey the time-dependant Schroedinger’s equation for a free particle.

3. The wave function for a particle is given by,

ϕ(x) = Aeikx +Be−ikx

where A and B are real constants. Show that ϕ(x)∗ϕ(x) is always a positive quantity.

4. * A free proton has a wave function given by

Ψ(x, t) = Aei(5.02∗10
11x−8:00∗1015t)

The coefficient of x is inverse meters, and the coeffcient of t is inverse seconds. Find its
momentum and energy.

5. A particle moving in one dimension is in a stationary state whose wave function,

Ψ(x) =


0, x < -a

A
(
1 + cos πx

a

)
, −a ≤ x ≤ a

0, x > a

where A and a are real constants.
(a) Is this a physically acceptable wave function? Explain.
(b) Find the magnitude of A so that ψ(x) is normalized.
(c) Evaluate ∆x and ∆p. Verify that ∆x∆p ≥ h̄/2.
(d) Find the classically allowed region.
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6. * Consider the 1-dimensional wave function of a particle of mass m, given by

ψ(x) = A

(
x

x0

)n

e
− x

x0

where, A, n and x0 are real constants.
(a)Find the potential V (x) for which ψ(x) is a stationary state (It is known that V (x) →
0 as x→ ∞ ).
(b)What is the energy of the particle in the state ψ(x) ?
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PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 7

* marked problems will be solved in the Wednesday tutorial class

Particle in a Box:

1. * For a particle in a 1-D box of side L, show that the probability of finding the particle
between x = a and x = a + b approaches the classical value b/L, if the energy of the
particle is very high.

2. Consider a particle confined to a 1-D box. Find the probability that the particle in its
ground state will be in the central one-third region of the box.

3. Consider a particle of mass m moving freely between x = 0 and x = a inside an infinite
square well potential.
(a) Calculate the expectation values ⟨X̂⟩n, ⟨P̂ ⟩n,

〈
X̂2

〉
n
, and

〈
P̂ 2

〉
n
, and compare them

with their classical counterparts.
(b) Calculate the uncertainties product ∆xn∆pn.
(c) Use the result of (b) to estimate the zero-point energy.

4. Consider a one dimensional infinite square well potential of length L. A particle is in
n = 3 state of this potential well. Find the probability that this particle will be observed
between x = 0 and x = L/6. Can you guess the answer without solving the integral?
Explain how.

5. * Consider a one-dimensional particle which is confined within the region 0 ≤ x ≤ a and
whose wave function is Ψ(x, t) = sin(πx/a) exp(−iωt).
(a) Find the potential V (x).
(b) Calculate the probability of finding the particle in the interval a/4 ≤ x ≤ 3a/4.

6. An electron is moving freely inside a one-dimensional infinite potential box with walls
at x = 0 and x = a. If the electron is initially in the ground state (n = 1) of the box
and if we suddenly quadruple the size of the box (i.e., the right-hand side wall is moved
instantaneously from x = a to x = 4a ), calculate the probability of finding the electron
in:
(a) the ground state of the new box and
(b) the first excited state of the new box.

7. Solve the time independent Schrodinger equation for a particle in a 1-D box, taking the
origin at the centre of the box and the ends at ±L/2, where L is the length of the box.
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8. * Consider a particle of mass m in an infinite potential well extending from x = 0 to
x = L. Wave function of the particle is given by

ψ(x) = A

[
sin

(πx
L

)
+ sin

(
2πx

L

)]
where A is the normalization constant

(a) Calculate A

(b) Calculate the expectation values of x and x2 and hence the uncertainty ∆x.

(c) Calculate the expectation values of p and p2 and hence the uncertainty∆p.

(d) What is the probability of finding the particle in the first excited state, if an energy
measurement is made?

(given,
∫ L

0
x cos

(
nπx
L

)
dx = 0,

∫ L

0
x2 cos

(
nπx
L

)
dx = 0, for all n)

9. Suppose we have 10,000 rigid boxes of same length L from x = 0 to x = L. Each box
contains one particle of mass m. All these particles are in the ground state.

(a) If a measurement of position of the particle is made in all the boxes at the same time,
in how many of them, the particle is expected to be found between x = 0 and L/4?

(b) In a particular box, the particle was found to be between x = 0 and L/4. Another
measurement of the position of the particle is carried out in this box immediately
after the first measurement. What is the probability that the particle is again found
between x = 0 and L/4?

10. * An electron is bound in an infinite potential well extending from x = 0 to x = L. At
time t = 0, its normalized wave function is given by

ψ(x, 0) =
2√
L
sin

(
3πx

2L

)
cos

(πx
2L

)
(a) Calculate ψ(x, t) at a later time t.

(b) Calculate the probability of finding the electron between x = L/4 and x = L/2 at
time t.

11. A speck of dust (m = 1 µg) is trapped to roll inside a tube of length L = 1.0 µm. The
tube is capped at both ends and the motion of the speck is considered to be along the
length of the tube.

(a) Modeling this as a 1-D infinite square well, determine the value of the quantum
number n if the speck has an energy of 1 µJ.
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(b) What is the probability of finding this speck within 0.1 µm of the center of the tube
(0.45 < x < 0.55).

(c) How much energy is needed to excite this speck to an energy level next to 1 µJ?
Compare this excitation energy with the thermal energy at room temperature (T =

300 K).

12. Consider a particle bound inside an infinite well whose floor is sloping (variation is small)
as shown in the figure. Without solving the Schrodinger equation (provide proper justifi-
cation for your answers),

(a) sketch a plausible wave function when the energy is E1, assuming that it has no
nodes.

(b) Sketch the wave function with 5 nodes when the energy is E2.

3



PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 8

* marked problems will be solved in the Wednesday tutorial class

Particle in a Finite Box:

1. * Consider the asymmetric finite potential well of width L, with a barrier V1 on one side
and a barrier V2 on the other side. Obtain the energy quantization condition for the bound
states in such a well. From this condition derive the energy quantization conditions for a
semi-infinite potential well (when V1 → ∞ and V2 is finite).

2. Consider a particle of mass ’m’ trapped in a finite square box of length ’a’ with barrier
height equals to V0. Find the number of bound states and the corresponding energies for
the finite square well potential if

√
ma2V0/

(
2h̄2

)
= 1 ).

3. An electron is trapped in a 1-dimensional symmetric potential well of height V0 and width
L (Figure A). The energy of electron is E, its wave number inside the well is k, and the
magnitude of the wave number outside the well is α.

1



(a) Derive the energy quantization conditions, in terms of k, α and L, for the symmetric
and anti-symmetric bound states.
(b) When the width of the well is L = 0.2 nm, it is found that the ground state energy
E1 = 4.45eV, and the first excited state energy E2 = 15.88eV. Calculate V0.
(c) Calculate the penetration depth for the ground state.
(d) If the width of the potential well is doubled to 2 L keeping V0 the same, estimate the
change in the ground state energy.
(e) Consider the potential which is generated from Figure A by setting V = ∞ at L = 0.
What is the energy of the ground state in this case?
(f) How many bound states are possible in this case?

4. *Consider a particle of mass m in a potential given by

V (x) = 0 for |x| < L/2,

= V0 for L/2 < |x| < L

= ∞ for |x| ≥ L

(a) Sketch the potential and the qualitative nature of the ground-state wave-function
(without solving the Schrodinger equation). Mention the functional form of the wave
function in each region.
(b) An electron is trapped in a symmetric finite potential of depth V0 = 1000eV and width
L = 1. What is approximate energy of the ground state?

5. A particle with energy E is bound in a finite square well potential with height U and
width 2L (as shown in the figure below)

(a) Consider the case E < U , obtain the energy quantization condition for the symmetric

wave functions in terms of K and α, where K =
√

2mE/h̄2 and α =
√
2m(U − E)/h̄2

(b) Apply this result to an electron trapped at a defect site in a crystal. Modeling the
defect as a finite square well potential with height 5eV and width 200pm, calculate the
ground state energy ?
(c) Calculate the total number of bound states with symmetric wavefunction?

2



6. *A particle of mass m is bound in a double well potential shown in the figure. Itsenergy
eigenstate ψ(x) has energy eigenvalue E = V o (where Vo is the energy of the plateau in
the middle of the potential well). It is known that ψ(x) = C ( C is a constant) in the
plateau region.

(a) Obtain ψ(x) for the regions −2 L < x < −L and L < x < 2L and the relation between
the wavenumber ’ k ’ and L.
(b) Determine ’ C ’ in terms of L.
(c) Assume that the bound particle is an electron and L = 1A. Calculate the 2 lowest
values of Vo (in eV ) for which such a solution exists.
(d) For the smallest allowed k, calculate the expectation values for x, x2, p and p2 and
show that Heisenberg’s Uncertainty Relation is obeyed.
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PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 9

* marked problems will be solved in the tutorial class (D3-D4: Wednesday, D1-D2: Saturday)

Scattering problems:

1. * A potential barrier is defined by V = 0 for x < 0 and V = V0 for x > 0. Particles with
energy E (< V0) approaches the barrier from left.

(a) Find the value of x = x0 (x0 > 0), for which the probability density is 1/e times the
probability density at x = 0.

(b) Take the maximum allowed uncertainty ∆x for the particle to be localized in the
classically forbidden region as x0. Find the uncertainty this would cause in the
energy of the particle. Can then one be sure that its energy E is less than V0.

2. Consider a potential

V (x) = 0 for x < 0,

= −V0 for x > 0

Consider a beam of non-relativistic particles of energy E > 0 coming from x → −∞ and
being incident on the potential. Calculate the reflection and transmission coefficients.

3. A potential barrier is defined by V = 0 eV for x < 0 and V = 7 eV for x > 0. A beam
of electrons with energy 3 eV collides with this barrier from left. Find the value of x for
which the probability of detecting the electron will be half the probability of detecting it
at x = 0.

4. * A beam of particles of energy E and de Broglie wavelength λ, traveling along the positive
x-axis in a potential free region, encounters a one-dimensional potential barrier of height
V = E and width L.

(a) Obtain an expression for the transmission coefficient.

(b) Find the value of L (in terms of λ) for which the reflection coefficient will be half.

5. A beam of particles of energy E < V0 is incident on a barrier (see figure below) of height
V = 2V0. It is claimed that the solution is ψI = A exp(−k1x) for region I (0 < x < L) and

ψII = B exp(−k2x) for region II (x > L), where k1 =
√

2m(2V0−E)
ℏ2 and k2 =

√
2m(V0−E)

ℏ2 .
Is this claim correct? Justify your answer.
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6. * A beam of particles of mass m and energy 9V0 (V0 is a positive constant with the
dimension of energy) is incident from left on a barrier, as shown in figure below. V = 0

for x < 0, V = 5V0 for x ≤ d and V = nV0 for x > d. Here n is a number, positive or
negative and d = πh/

√
8mV0. It is found that the transmission coefficient from x < 0

region to x > d region is 0.75.

(a) Find n. Are there more than one possible values for n?

(b) Find the un-normalized wave function in all the regions in terms of the amplitude of
the incident wave for each possible value of n.

(c) Is there a phase change between the incident and the reflected beam at x = 0? If
yes, determine the phase change for each possible value of n. Give your answers by
explaining all the steps and clearly writing the boundary conditions used

7. A scanning tunneling microscope (STM) can be approximated as an electron tunneling
into a step potential [V (x) = 0 for x ≤ 0, V (x) = V0 for x > 0]. The tunneling current
(or probability) in an STM reduces exponentially as a function of the distance from the
sample. Considering only a single electron-electron interaction, an applied voltage of 5V
and the sample work function of 7 eV, calculate the amplification in the tunneling current
if the separation is reduced from 2 atoms to 1 atom thickness (take approximate size of
an atom to be 3 Å).
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PH-107: Introduction to Quantum Mechanics
Tutorial Sheet 10

* marked problems will be solved in the tutorial class (D3-D4: Wednesday, D1-D2: Saturday)

Simple Harmonic Oscillator and 2D/3D Systems:

1. Using the uncertainty principle, show that the lowest energy of an oscillator is ℏω/2.

2. Determine the expectation value of the potential energy for a quantum harmonic oscillator
(with mass m and frequency ω) in the ground state. Use this to calculate the expectation
value of the kinetic energy. The ground state wavefunction of quantum harmonic oscillator
is:

ψ0(x) = C0 exp
(
−mω

2ℏ
x2
)

C0 is constant; (1)

3. A diatomic molecule behaves like a quantum harmonic oscillator with the force constant
k = 12Nm−1 and mass m = 5.6 ∗ 10−26kg

(a) What is the wavelength of the emitted photon when the molecule makes the transition
from the third excited state to the second excited state ?

(b) Find the ground state energy of vibrations for this diatomic molecule.

4. Vibrations of the hydrogen molecule can be modeled as a simple harmonic oscillator with
the spring constant k = 1.13 ∗ 103Nm−2 and mass m = 1.67 ∗ 1027 kg.

(a) What is the vibrational frequency of this molecule ?

(b) What are the energy and the wavelength of the emitted photon when the molecule
makes transition between its third and second excited states ?

5. * A two-dimensional isotropic harmonic oscillator has the Hamiltonian

H = − ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
k(x2 + y2)

(a) Show that the energy levels are given by

Enx,ny = ℏω(nx + ny + 1) where nx, ny ∈ (0, 1, 2...) ω =

√
k

m

(b) What is the degeneracy of each level?

6. * Consider the Hamiltonian of a two-dimensional anisotropic harmonic oscillator (ω1 ̸= ω2)

H =
p1

2

2m
+
p2

2

2m
+

1

2
mω1

2q1
2 +

1

2
mω2

2q2
2

1



(a) Exploit the fact that the Schrödinger eigenvalue equation can be solved by separating
the variables and find a complete set of eigenfunctions of H and the corresponding
eigenvalues.

(b) Assume that ω1

ω2
= 3

4
.Find the first two degenerate energy levels. What can one say

about the degeneracy of energy levels when the ratio between ω1 and ω2 is not a
rational number.

7. A particle of mass m is confined to move in the potential (mω2x2) /2. Its normalized wave
function is

ψ(x) =

(
2β√
3

)(
β

π

)1/4

x2e−(βx
2/2)

where β is a constant of appropriate dimension.
(a) Obtain a dimensional expression for β in terms of m,ω and ℏ.
(b) It can be shown that the above wave function is the linear combination

ψ(x) = aψ0(x) + bψ2(x)

where ψ0(x) is the normalized ground state wave function and ψ2(x) is the normalized
second excited state wave function of the potential. Evaluate b and hence calculate the
expectation value of the energy of the particle in this state ψ(x).
Given: I0(β) =

∫ +∞
−∞ e−βx2

dx =
√

π
β
, In(β) =

∫ +∞
−∞ (x2)

n
e−βx2

dx = (−1)n ∂n

∂βn (I0(β)) ,

ψ0(x) =
(
β
π

)1/4
e

−βx2

2

8. Consider an 3D isotropic harmonic oscillator show that the degeneracy gn of the nth
excited state, which is equal the number of ways the non negative integers nx, ny, nz may
be chosen to total to n, is given by

gn =
1

2
(n+ 1)(n+ 2)

9. * A charged particle of mass ’ m ’ and charge ’ q ’ is bound in a 1-dimensional simple
harmonic oscillator potential of angular frequency ’ ω ’. An electric field E0 is turned on.
(a) What is the total potential V(x) experienced by the charge ?
(b) Express the total potential in the form of an effective harmonic oscillator potential.
(c) Sketch V (x) versus x.
(d) What is the ground state energy of the particle in this potential?
(e) What is the expectation value of the position (x) if the charge is in its ground state ?
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Tutorial Sheet 11

* marked problems will be solved in the tutorial class (D3-D4: Wednesday, D1-D2: Saturday)

Statistical Mechanics:

1. A national powerball lottery uses two sets of balls. The first set consists of 59 sequentially
numbered balls and the second set consists of 35 sequentially numbered balls. Assume
equal probability of choosing any ball and that all the balls are differently numbered. Five
balls are chosen without replacement from the set of 59. Then one ball is chosen from
the set of 35. Calculate the number of ways these six balls can be chosen (and thus your
probability of winning the grand powerball prize).

2. Suppose we have 20 coins and we flip all of them together.

(a) Considering all the coins to be independent of each other, how many possible out-
comes (no. of microstates) do you expect with such a flipping?

(b) How many ways are there for obtaining 12 heads and 8 tails?

(c) What is the probability of obtaining 12 heads and 8 tails regardless of the order?
They are called macrostates.

3. Three indistinguishable particles (say electrons) are to be arranged in three different energy
levels of energy 0, E and 2E, with respective degeneracies (ignore spin degeneracy) 2, 10
and 20. The total energy available is 3E. What are the possible distributions and what
are their probabilities?

4. * Consider a particle confined to a 3D harmonic oscillator potential, V (x, y, z) = 1
2
mω2(x2+

y2 + 4z2)

(a) Calculate the ground state energy of the particle.

(b) What is the degeneracy of the state with energy, E = 7ℏω?

5. A certain thermodynamic system has non-degenerate energy levels, with energies 0, E,
3E, 5E and 9E. Suppose that there are four particles, with total energy U = 9E. Identify
the possible distribution of particles and evaluate their microstates when (a) the particles
are distinguishable, (b) the particles are identical bosons and (c) the particles are identical
fermions.

6. In how many ways three electrons can occupy ten states (include spin degeneracy)? Is the
number same as the way in which three persons can occupy ten chairs in a room? State
the reason. In case the number is different, find the other number also.
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7. The energy of a particle in a 3-D cubical box is given by

Enx,ny ,nz =
π2ℏ2

2mL2

(
n2
x + n2

y + n2
z

)
If these levels are going to be occupied by electrons, write the energy values correspond-
ing to the five lowest levels, taking into account the spin degeneracy. If three electrons
occupy these states, find out the possible distributions which would yield a total energy
of 18π2ℏ2/2mL2. Also find out the probability for each distributions.

A system has one state with energy 0, four states with energy 2E and eight states with
energy 3E. Six electrons are to be distributed among these states such that their total
energy is 12E. Consider a configuration (j,m, n) in which j electrons are in 0 energy
state, m electrons are in 2E energy state and n electrons are in 3E state.

(a) Calculate the total number of microstates for the configuration (1,3,2).

(b) Find the ratio of probability of occurrence of a configuration (2,0,4) to that of a
configuration (1,3,2)

8. * Consider a system of five particles trapped in a 1-D harmonic oscillator potential.

(a) What are the microstates of the ground state of this system for classical particles,
identical Bosons and identical spin half Fermions.

(b) Suppose that the system is excited and has one unit of energy (ℏω) above the cor-
responding ground state energy in each of the three cases. Calculate the number of
microstates for each of the three cases.

(c) Suppose that the temperature of this system is low, so that the total energy is low
(but above the ground state), describe in a couple of sentences, the difference in
the behavior of the system of identical bosons from that of the system of classical
particles.
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