
An Introductory Study of Strange Attractors through

Some Relevant Systems

Jai Israni
Mithil Vakde
Priyam Dubey
Shyam Iyer

Abstract

Strange attractors in phase space are a recent development in the study of dynamical systems, noted
for their unique fractal structure. They have been discovered and studied in many systems, the most
prominent being the first order Lorenz and Rossler equations and the Henon map. Trajectories showing
sensitive dependence on initial conditions in the infinite time limit are capable of displaying exponential
separation on the average while remaining within the confines of the strange attractor. The starting
point for this project was “What is...a Strange Attractor?” by David Ruelle, Notices of the American
Mathematical Society. 53 (7): 764–765.

(Strange) Attractors

In the mathematical field of dynamical systems, an attractor is a set of numerical values toward which a system
tends to evolve, for a wide variety of starting conditions of the system. A closed subset C of the phase space can be
classified as an attractor if it possesses the following characteristics:

• C is forward invariant. i.e, if one point on a trajectory lies in C, then all subsequent iterations will remain in C.
• There exists a basin of attraction of which C is a subset such that all points lying in the basin will enter C in the

limit of infinite time
• Finally, there exists no proper subset of C which fulfills the two preceding conditions.

A Strange Attractor is an attractor that has a fractal structure. A necessary condition for an attractor to classify
as “strange” is that all trajectories that converge to it must exhibit sensitive dependence on initial conditions. This
term was first coined by David Ruelle and Floris Takens in their 1971 paper describing fluid flow where they pointed
out that turbulent flow results from a strange attractor regime in the Navier-Stokes equations. It is a relatively
abstract mathematical concept which is recently witnessing applications in engineering and related systems.

Lorenz Attractor

For nearly 60 years, one of the classic icons of modern non-linear dynamics has been the Lorenz attractor. With its
intriguing double-lobed shape and chaotic dynamics, the Lorenz attractor has symbolized order within chaos.

Edward Lorenz in the 1960s developed a system of three nonlinear differential equations inspired by a simplified
model of convection rolls in the earth’s atmosphere. These equations also describe the state of leaky water wheels
and they also appear in descriptions of lasers and dynamos.

ẋ = a(y − x)

ẏ = x(b− z)− y

ż = xy − cz

1

a is known as the Prandtl number and b the Rayleigh number. The series does not form limit cycles nor does it
ever reach a steady state. Instead it is an example of deterministic chaos. As with other chaotic systems the Lorenz
system exhibits sensitive dependence on initial conditions, where two initial states will eventually display divergent
trajectories, no matter how close they may be.

One normally assumes that the parameters a, b, c are positive. We explore the different possibilities of these
values to find the strange attractor. The Jacobian for the system is: −a a 0

b− z −1 −x
y x −c


The origin is always a fixed point. Its eigenvalues are

−c,
−a− 1−

√
(a− 1)2 + 4ab

2
,
−a− 1−

√
(a− 1)2 + 4ab

2

We can see that the origin is stable in two directions for all positive values of a,b,c. When b < 1, all 3 directions
are stable and all flows converge to the origin (global attractor). Hence a strange attractor cannot exist here since
this violates sensitive dependence on initial conditions. A pitchfork bifurcation occurs at b = 1, and for b > 1 two
additional critical points appear at:

(
√
c(b− 1)

√
c(b− 1), b− 1) and (−

√
c(b− 1),−

√
c(b− 1), b− 1)

Continuing in this range, we wish to look at values where the points are repelling since otherwise, states wouldn’t
reach a chaotic attractor.. We see that a critical value of b exists beyond which these points become unstable. The
calculations yield this value to be

b < a(
a+ c+ 3

a− c− 1
)

which can hold only for positive b if a > c+ 1. The stability occurs through a subcritical Hopf bifurcation.
We take the standard values of a = 10, c = 8/3, b = 28 to satisfy the above conditions. By noting the properties

that all volumes tend to zero and that the known fixed points are all repelling, we come to the conclusion that there
must exist another attractor in this range of values. This is the strange attractor. In Figure 2, we have plotted
the values of x against time for different initial values and after a transient, we see aperiodic behavior. Running
simulations of the system on the R3, we plotted the 3-dimensional view and the projections on the xz and yz planes
(Figure 1)

Figure 1: Lorenz attractor scatter plot, (3.5,3.5,3.5) [a = 10, c = 8/3, b = 28] (a) 3D view (b)XZ projection (C) Y Z
projection

2

Figure 2: x vs t plots for Initial values x0 = y0 = z0 = (a) 3.3(top left) (b) 3.5(top right) (c) 3.7(bottom left) (d)
3.9(bottom right)

Rossler Attractor

The Rossler attractor is a chaotic attractor solution to the system

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c)

proposed by Otto Rossler (1976), often called Rossler system. Here, (x, y, z) ∈ R3 are dynamical variables defining
the phase space and (a, b, c) ∈ R3 are parameters. Rossler had been motivated by the search for chemical chaos, that
is, chaotic behavior in far-from-equilibrium chemical kinetics. To quote his inspiration:

“I wondered if a rope around the nose, circling it in several loops before falling off at the tip and then
curving back to the starting point or its neighborhood, would not produce a similar tangle in 3D-space.”

The Rossler system is unique as it is minimal in chaos, for three reasons:

• It has a minimum phase space dimension of 3.
• It has a single non-linear term xz in the ż equation.
• It generates a chaotic attractor with a single lobe as compared to the Lorenz attractor which has two lobes.

Trajectories in the Rossler attractor exhibit planar behaviour in the x-y plane as an outward spiral centered at a
fixed point, and once they have reached a maximum radius from the center, the trajectory jumps in the z-direction
and folds back onto the x-y plane to continue the subsequent motion. This behaviour is the simplest explanation of
making evident the requirement that chaotic flow requires more than two dimensions.

The fixed points for the Rossler system are recovered by setting each of the equations to zero, and solving for the
three unknowns x, y and z.

We get the two fixed points as:

x =
c−
√
c2 − 4ab

2
, y =

−c+
√
c2 − 4ab

2a
, z =

c−
√
c2 − 4ab

2a

and

3

x =
c+
√
c2 − 4ab

2
, y =

−c−
√
c2 − 4ab

2a
, z =

c+
√
c2 − 4ab

2a

Figure 3: 3D figure of a Rossler attractor for a = 0.2, b = 0.2, c = 5.7

On solving for the parameter values a = 0.2, b = 0.2, c = 5.7 we obtain the fixed points as

(0.007,−0.035, 0.035) and (5.69,−28.5, 28.5)

It has been noted in prior studies of this attractor that the latter set of fixed points is insignificant, as the initial
conditions in its vicinity tend to be pushed towards the fixed point near origin. Hence, we will focus our analysis on
the former set of fixed points.

Solving for the eigenvalues of the Rossler attractor, we first obtain the Jacobian matrix as follows

J =

0 −1 −1
1 a 0
z 0 x− c


The cubic equation obtained from solving |J − λI| is

λ3 + (a+ x− c)λ2 + (ax+ 1 + z − ac)λ− x− az + c = 0

Taking the fixed point closest to origin (0.007,−0.035, 0.035) and the parameters (a = 0.2, b = 0.2, c = 0.2) the
cubic equation can be solved to yield the following results for λ:

λ1,2 = 0.097012± 0.99519i, λ3 = −5.687024

From the obtained eigenvalues we can infer that the first two eigenvalues correspond to the outward circular motion
on the x-y plane while the third eigenvalue being negative corresponds to the attracting influence or ”reinjection” of
the system along the z direction.

Figure 4: (a) x vs t, (b) y vs t, (c) z vs t plots for initial conditions x0 = y0 = z0 = 1 for the Rossler system

4

Henon Map

The Henon map is a discrete-time system, which takes a point (xn, yn) in the plane and maps it to a new point

xn+1 = 1 + yn − ax2n
yn+1 = bxn

This map can be looked upon as a series of transformations on a plane of initial points within the basin of attraction
in the following manner:

• Folding and stretching
x′ = x, y′ = 1 + y − ax2

• Compression along x axis
x′′ = bx′, y′′ = y′

• Reflection along the line y = x
x′′′ = y′′, y′′′ = x′′

Figure 5: (a)Strange attractor in the Phase portrait of the Henon map (b) y vs t (c) x vs t [a = 1.4, b = 0.3, starting
at (1, 1)]

We have plotted the phase potrait of the Henon map for the initial values (1, 1) with the classical value of
parameters, a = 1.4, b = 0.3. For the same parameter and initial value, we have also plotted the x vs t and y vs t
graphs of the Henon map. It is evident from them that we have a chaotic strange attractor for these values.

Figure 6: Changing view scales of the saddle/strange attractor of the Henon map

Consider the boxed part of the Henon map (Figure 6): It appears smooth in one direction and acts as a Cantor
set (which is a fractal itself) in another direction. In the transverse direction, we see that the Henon map has 6
groups of parallel curves. Reducing the scale, we see that each group of curves contains finer groups of 6 lines and the
self similarity becomes apparent. This continues ad infinitum. Hence the fractal structure of the strange attractor
becomes apparent.

Fractal Dimension

There is no clear definition of fractals. However, two important characteristics of fractals are
• having some degree of self-similarity and
• that they have detailed structures at arbitrary scales (as opposed to becoming featureless and smooth at small

scales).

A fractal dimension is an index for characterizing fractal patterns or sets by quantifying their complexity as a
ratio of the change in detail to the change in scale. In general, a more complex fractal object has a higher fractal
dimension. There are different measures of this, notably the box, the correlation, and the Hausdorff dimension.

5

Box Dimension

To calculate the box dimension for a fractal, we imagine the fractal lies on an evenly spaced grid (of squares, cubes
or hypercubes, accordingly from the dimension of the topological space that the fractal lies in). The box-counting
dimension is calculated by observing how the number of squares or cubes covering the fractal structure changes as
we make the grid finer, by applying a box-counting algorithm. Suppose N(ε) is the number of boxes of side length ε
required to cover the fractal. Then the box-counting dimension is defined as:

dimbox := lim
ε→0

logN(ε)

log (1/ε)

Roughly, we are trying to correspond the surface area, volume or hyper-volume of the fractal as a power law, which
is what one expects in the case of a smooth manifold of integer dimension d.

N(
1

n
) ≈ Cnd

e.g. area of circle = πr2, this indeed matches up with our expectation that a circle is a 2-dimensional object.

Hausdorff Dimension

The Hausdorff dimension is a commonly used definition for measuring the fractal dimension of a strange attractor.
The formal definition of the Hausdorff dimension is as follows:

Consider a fractal lying in a space with topological dimension n. For every d > 0 there exists a (atmost) countable
closed cover of the fractal, with sets having diameter less than d. We define the Hausdorff measure of a fractal (of
α dimensions) to be the infimum of a set of positive numbers, each being greater than the sum of these diameters
raised to the power α. The Hausdorff dimension is the infimum of the set of α having a corresponding Hausdorff
measure 0. Informally, instead of using hypercubes of fixed sizes as in the box dimension, we have used closed sets
of varying sizes.

The calculation of the box and Hausdorff dimensions is quite involved, and hence is out of the scope of this report.

Conclusion

Even seemingly simple dynamical systems can exhibit a wide range of exciting properties and complex behavior by
varying the value of its parameters. This is most profoundly exhibited by the existence of a strange attractor in
the single non-linearity wielding Rossler system. These dynamical systems still have vast areas unexplored along
parameter space. We found it fascinating that flows which cannot intersect each other in autonomous systems and
are smooth everywhere can give rise to bounded attractors that occupy zero volume without periodicity and are not
fixed points or limit cycles. We recognize that this is possible only due to the fractal nature of these objects as they
can show fine structure at any scales.

Bibliography

The following resources have been indispensable to our research and in completing this report.

1. Ruelle D., Strange Attractors
2. Strogatz S. (1994), Nonlinear Dynamics and Chaos (Perseus Books)
3. Ott, E. ”Appendix: Hausdorff Dimension.” Chaos in Dynamical Systems. New York: Cambridge University

Press, pp. 100-103, 1993
4. D. Auerbach, P. Cvitanovic, J.-P. Eckmann, G.H. Gunaratne, I. Procaccia, Exploring chaotic motion through

periodic orbits, Phys. Rev. Lett. 58 (1987) 2387.
5. Kenneth Falconer (1990), Fractal Geometry: Mathematical Foundations and Applications (New York: Wiley)

6

Appendix- Codes

Lorenz Attractor

1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In [39]:

5

6 import numpy as np

7 from matplotlib import pyplot as plt

8 get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)

9 from mpl_toolkits.mplot3d import Axes3D

10

11 # Parameters

12

13 # In [40]:

14

15 a = 10

16 b = 28

17 c = 8/3

18

19 # Initial Conditions

20

21 # In [41]:

22

23 x0 = 3.5

24 y0 = 3.5

25 z0 = 3.5

26

27 dt = 0.01

28 t0 = 0

29

30 # Iterative Algorithm

31

32 # In [42]:

33

34 x = x0

35 y = y0

36 z = z0

37 t = t0

38

39 x_list = []

40 y_list = []

41 z_list = []

42 t_list = []

43

44 for i in range (10000):

45 x_list.append(x)

46 y_list.append(y)

47 z_list.append(z)

48 t_list.append(t)

49

50 x1 = x + a*(y-x)*dt

51 y1 = y + (x*(b-z)-y)*dt

52 z1 = z + (x*y-c*z)*dt

53 t += dt

54

55 x = x1

56 y = y1

57 z = z1

58

59 # In [51]:

60

61 plt.plot(t_list , x_list)

62 plt.xlim (20 ,40)

63

7

64 # In [50]:

65

66 plt.plot(t_list , y_list)

67 plt.xlim (20 ,40)

68

69 # In [49]:

70

71 plt.plot(t_list , z_list)

72 plt.xlim (20 ,40)

73

74 # In [52]:

75

76 plt.scatter(x_list , y_list , s=0.1)

77

78 # In [53]:

79

80 plt.scatter(x_list , z_list , s=0.1)

81

82 # In [57]:

83

84 plt.scatter(y_list , z_list , s=0.1)

85

86 # In [38]:

87

88 plt.figure ()

89

90 ax = plt.axes(projection=’3d’)

91 ax.scatter(np.array(x_list), np.array(y_list), np.array(z_list), label="xyz plot", s=0.1)

92 plt.legend(loc=’best’)

93

94 # In[]:

Rossler Attractor

1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[1]:

5 from __future__ import print_function

6 from ipywidgets import interact , interactive , fixed , interact_manual

7 import ipywidgets as widgets

8

9 import numpy as np

10 import matplotlib.pyplot as plt

11 get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)

12 from mpl_toolkits.mplot3d import Axes3D

13

14 # Initial conditions

15 # In[2]:

16 x0 = 1

17 y0 = 1

18 z0 = 1

19

20 # Parameters

21 # In[3]:

22 a = 0.2

23 b = 0.2

24 c = 5.7

25

26 t0 = 0

27 dt = 0.1

28

29 # Plotting

30 # In[4]:

31 x_list = []

32 y_list = []

33 z_list = []

34 t_list = []

8

35

36 x1 = x0

37 y1 = y0

38 z1 = z0

39 t1 = t0

40

41 for extent in range (100000):

42 x_list.append(x1)

43 y_list.append(y1)

44 z_list.append(z1)

45 t_list.append(t1)

46

47 x2 = x1 - (y1 + z1)*dt

48 y2 = y1 + (x1 + a*y1)*dt

49 z2 = z1 + b + z1*(x1 - c)*dt

50 t2 = t1 + dt

51

52 x1 = x2

53 y1 = y2

54 z1 = z2

55 t1 = t2

56

57 plt.figure ()

58 plt.scatter(x_list , y_list , s=0.01 , label=’xy plot’)

59 plt.xlabel(’x’)

60 plt.ylabel(’y’)

61 plt.legend(loc=’best’)

62

63 plt.figure ()

64 plt.scatter(x_list , z_list , s=0.01 , label=’xz plot’)

65 plt.xlabel(’x’)

66 plt.ylabel(’z’)

67 plt.legend(loc=’best’)

68

69 plt.figure ()

70 plt.scatter(y_list , z_list , s=0.01 , label=’yz plot’)

71 plt.xlabel(’y’)

72 plt.ylabel(’z’)

73 plt.legend(loc=’best’)

74

75 plt.figure ()

76 ax = plt.axes(projection=’3d’)

77 ax.scatter3D(np.array(x_list), np.array(y_list), np.array(z_list), label="xyz plot", s=0.01)

78 ax.set_xlabel(’x’)

79 ax.set_ylabel(’y’)

80 ax.set_zlabel(’z’)

81 plt.legend(loc=’best’)

82 # ## Time -series plots

83 # In[5]:

84 plt.figure ()

85 plt.scatter(t_list [:1000] , x_list [:1000] , s=1, label="x versus t")

86 plt.xlabel("t")

87 plt.ylabel("x")

88 plt.legend(loc=’upper right’)

89

90 plt.figure ()

91 plt.scatter(t_list [:1000] , y_list [:1000] , s=1, label="y versus t")

92 plt.xlabel("t")

93 plt.ylabel("y")

94 plt.legend(loc=’upper right’)

95

96 plt.figure ()

97 plt.scatter(t_list [:1000] , z_list [:1000] , s=1, label="z versus t")

98 plt.xlabel("t")

99 plt.ylabel("z")

100 plt.legend(loc=’upper right’)

101 # ## Rossler Map for x
102 # In[6]:

9

103 xmax_list = []

104 for i in range(1,len(x_list) -1):

105 x = x_list[i]

106 if (x > x_list[i-1] and x > x_list[i+1]):

107 xmax_list.append(x)

108 plt.scatter(xmax_list [:-1], xmax_list [1:], s=0.1)

109 plt.xlim (0 ,14)

110 plt.ylim (0 ,14)

111

112 # ## Visualizing Chaos in the XY plot

113 # In [10]:

114 def chaos_plot(c):

115 x_list = []

116 y_list = []

117 z_list = []

118 t_list = []

119

120 x1 = x0

121 y1 = y0

122 z1 = z0

123 t1 = t0

124

125 for extent in range (10000):

126 x_list.append(x1)

127 y_list.append(y1)

128 z_list.append(z1)

129 t_list.append(t1)

130

131 x2 = x1 - (y1 + z1)*dt

132 y2 = y1 + (x1 + a*y1)*dt

133 z2 = z1 + b + z1*(x1 - c)*dt

134 t2 = t1 + dt

135

136 x1 = x2

137 y1 = y2

138 z1 = z2

139 t1 = t2

140

141 plt.figure ()

142 plt.scatter(x_list , y_list , s=0.1, label=’xy plot’)

143 plt.xlabel(’x’)

144 plt.ylabel(’y’)

145 plt.legend(loc=’best’)

146 plt.xlim (-10,10)

147 plt.ylim (-10,10)

148

149 interact(chaos_plot , c=widgets.FloatSlider(min=1.2,max=10,step =0.1, value =5.7))

Henon Map

1 #!/usr/bin/env python

2 # coding: utf -8

3 # In[1]:

4 from __future__ import print_function

5 from ipywidgets import interact , interactive , fixed , interact_manual

6 import ipywidgets as widgets

7

8 import numpy as np

9 import matplotlib.pyplot as plt

10 get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)

11 # Initial Conditions

12 # In[2]:

13 x0 = 1

14 y0 = 1

15

16 # Parameters

17 # In[3]:

18 a = 1.4

10

19 b = 0.3

20

21 t0 = 0

22 dt = 1

23

24 # Plotting the Phase Portrait

25 # In[4]:

26 x_list = []

27 y_list = []

28 t_list = []

29

30 x0 = -0.5

31 y0 = -0.3

32 t = t0

33

34 for t_range in range (10000):

35 x_list.append(x0)

36 y_list.append(y0)

37 t_list.append(t)

38

39 x = y0 + 1 - a*(x0**2)

40 y = b*x0

41 x0 = x

42 y0 = y

43 t += dt

44

45 plt.scatter(x_list , y_list , c=’blue’, s=0.01, label=’phase portrait ’)

46 plt.legend ()

47 # Interactive Phase Portrait

48 # In [19]:

49 def phase_portrait(a, b, t0=0, dt=1):

50

51 x_list = []

52 y_list = []

53 t_list = []

54

55 x0 = -0.5

56 y0 = -0.3

57 t = t0

58

59 for t_range in range (10000):

60 x_list.append(x0)

61 y_list.append(y0)

62 t_list.append(t)

63

64 x = y0 + 1 - a*(x0**2)

65 y = b*x0

66 x0 = x

67 y0 = y

68 t += dt

69

70 plt.scatter(x_list , y_list , c=’blue’, s=0.01, label=’phase portrait ’)

71 plt.legend ()

72

73 interact(phase_portrait , a=widgets.FloatSlider(min=1,max =1.45, step =0.01 , value =1.4), b=widgets.

FloatSlider(min=0,max=0.4, step =0.01 , value =0.3))

74 # ### Unstable Manifold of the Saddle Point

75 # In[6]:

76 x_list = []

77 y_list = []

78 t_list = []

79

80 x0 = -0.5

81 y0 = -0.3

82 t = t0

83

84 for t_range in range (100000):

85 x_list.append(x0)

11

86 y_list.append(y0)

87 t_list.append(t)

88

89 x = y0 + 1 - a*(x0**2)

90 y = b*x0

91 x0 = x

92 y0 = y

93 t += dt

94

95 plt.scatter(x_list , y_list , c=’brown’, s=0.01, label=’Unstable Manifold of the Saddle Point’)

96 plt.legend ()

97 plt.xlim(-1.3,-1)

98 plt.ylim (0.34 ,0.4)

99

100 # In[7]:

101 plt.scatter(x_list , y_list , c=’brown’, s=0.7, label=’Zooming ONCE into the small square ’)

102 plt.legend ()

103 plt.xlim (0.4, 0.6)

104 plt.ylim (0.18 , 0.23)

105 plt.figure ()

106 plt.scatter(x_list , y_list , c=’brown’, s=0.7, label=’Zooming TWICE into the small square ’)

107 plt.legend ()

108 plt.xlim (0.475 , 0.525)

109 plt.ylim (0.205 , 0.214)

110 # ### Plot of x(t) versus t

111 # In [17]:

112 plt.scatter(t_list , x_list , c=’green’, s=5)

113 plt.plot(t_list , x_list)

114 plt.xlim (0 ,100)

115

116 # ### Plot of y(t) versus t

117 # In [16]:

118 plt.scatter(t_list , y_list , c=’green’, s=5)

119 plt.plot(t_list , y_list)

120 plt.xlim (0 ,100)

121 plt.ylim(-0.75, 0.75)

Japanese/Ueda Map

1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[1]:

5

6

7 from __future__ import print_function

8 from ipywidgets import interact , interactive , fixed , interact_manual

9 import ipywidgets as widgets

10 import numpy as np

11 import matplotlib.pyplot as plt

12 get_ipython ().run_line_magic(’matplotlib ’, ’inline ’)

13 from mpl_toolkits.mplot3d import Axes3D

14

15

16 # Parameters

17

18 # In[2]:

19

20

21 k = 0.1

22 B = 7.5

23 delta_t = 1e-3

24

25

26 # Inital Conditions

27

28 # In[3]:

29

12

30

31 x_init = 3

32 y_init = 2

33

34

35 # Iterative Algorithm

36

37 # In[6]:

38

39

40 x_init = 2

41 y_init = 2

42

43 x_n = x_init

44 x_n_plus_1 = (y_init)*(delta_t) + (x_init)

45 t_n = 0

46

47 t_counter = []

48 x_counter = []

49 y_counter = []

50

51 for iter_count in range (100000):

52 t_n = (iter_count)*(delta_t) ; t_counter.append(t_n)

53 y_n = (x_n_plus_1 - x_n)/delta_t ; y_counter.append(y_n)

54 x_counter.append(x_n)

55 x_n_plus_2 = 2*(x_n_plus_1) - (x_n) + ((delta_t)**2)*(B*(np.cos(t_n)) - (x_n)**3) - ((k)*(

delta_t))*((x_n_plus_1) - (x_n))

56 x_n = x_n_plus_1

57 x_n_plus_1 = x_n_plus_2

58

59 plt.scatter(x_counter , y_counter ,c=’green’,label="Phase Portrait", s=0.01)

60 plt.legend(loc=’best’)

61

62 plt.figure ()

63

64 y_2npi = []

65 x_2npi = []

66 t_2npi = []

67 for i in range(len(t_counter) - 1):

68 if abs((y_counter[i+1]- y_counter[i])/delta_t + k*(x_counter[i+1]- x_counter[i])/delta_t + (

x_counter[i])**3 - B) < 0.1:

69 y_2npi.append(y_counter[i])

70 x_2npi.append(x_counter[i])

71 t_2npi.append(t_counter[i])

72 plt.scatter(x_2npi , y_2npi ,c=’blue’, label="Stroboscopic Map", s=0.01)

73 plt.legend(loc=’best’)

74

75 plt.figure ()

76

77 ax = plt.axes(projection=’3d’)

78

79 ax.plot3D(np.array(x_counter), np.array(y_counter), np.array(t_counter), label="xyt plot")

80 plt.legend(loc=’best’)

81

82

83 # Interactive plot

84

85 # In[8]:

86

87

88 def plots(B):

89

90 x_init = 2

91 y_init = 2

92

93 x_n = x_init

94 x_n_plus_1 = (y_init)*(delta_t) + (x_init)

95 t_n = 0

13

96

97 t_counter = []

98 x_counter = []

99 y_counter = []

100

101 for iter_count in range (30000):

102 t_n = (iter_count)*(delta_t) ; t_counter.append(t_n)

103 y_n = (x_n_plus_1 - x_n)/delta_t ; y_counter.append(y_n)

104 x_counter.append(x_n)

105 x_n_plus_2 = 2*(x_n_plus_1) - (x_n) + ((delta_t)**2)*(B*(np.cos(t_n)) - (x_n)**3) - ((k)*(

delta_t))*((x_n_plus_1) - (x_n))

106 x_n = x_n_plus_1

107 x_n_plus_1 = x_n_plus_2

108

109 plt.scatter(x_counter , y_counter ,c=’green’,label="Phase Portrait", s=0.01)

110 plt.legend(loc=’best’)

111

112 interact(plots , B=widgets.FloatSlider(min=0,max=20,step =0.5, value =10))

113

114

115 # In[]:

14

