PH-107: Introduction to Quantum Mechanics Tutorial Sheet 4

Only "*" to be solved in the tutorials

Fourier Transform

- 1. *If $\phi(k) = A(a |k|), |k| \le a$, and 0 elsewhere. Where a is a positive parameter and A is a normalization factor to be found.
 - (a) Find the Fourier transform for $\phi(k)$
 - (b) Calculate the uncertainties Δx and Δp and check whether they satisfy the uncertainty principle.
- 2. A wave packet is of the form $f(x) = \cos^2\left(\frac{x}{2}\right)(for \pi \le x \le \pi)$ and f(x) = 0 elsewhere
 - (a) Plot f(x) versus x.
 - (b) Calculate the Fourier transform of f(x), i.e. $g(k) = \int_{-\infty}^{+\infty} f(x)e^{-ikx}dx$?
 - (c) At what value of k, |g(k)| attains its maximum value?
 - (d) Calculate the value(s) of k where the function g(k) has its first zero.
 - (e) Considering the first zero(s) of both the functions f(x) and g(k) to define their spreads (i.e. Δx and Δk), calculate the uncertainty product $\Delta x.\Delta k$.
- 3. *A wave function $\psi(x)$ is defined such that $\psi(x) = \sqrt{2/L}\sin(\pi x/L)$ for $0 \le x \le L$ and $\psi(x) = 0$ otherwise.
 - (a) Writing $\psi(x) = \int_{-\infty}^{\infty} a(k)e^{ikx}dk$, find a(k).
 - (b) What is the amplitude of the plane wave of wavelength L constituting $\psi(x)$?
- 4. A wave packet is of the form $f(x) = \exp(-\alpha|x|) \cdot \exp(ik_0x)$ (for $-\infty \le x \le \infty$) where α, k_0 are positive constants.
 - (a) Plot |f(x)| versus x.
 - (b) At what values of x does |f(x)| attain half of its maximum value? Consider the full width at half maxima (FWHM) as a measure of the spread (uncertainty) in x, find Δx
 - (c) Calculate the Fourier transform of f(x), i.e. $g(k) = \int_{-\infty}^{+\infty} f(x)e^{ikx}dx$
 - (d) Plot g(k) versus k.
 - (e) Find the values of k at which g(k) attains half its maximum value? Using the same concept of FWHM as in part (b), calculate Δk ? Hence calculate the product $\Delta x.\Delta k$ [Given : $\int_0^\infty e^{-(\alpha-ik)x} dx = \frac{1}{\alpha-ik}$]

Heisenberg Uncertainty Principle

1. Estimate the uncertainty in the position of (a) a neutron moving at 5×10^6 m s⁻¹ and (b) a 50 kg person moving at 2 m s⁻¹.

- 2. A lead nucleus has a radius 7×10^{-15} m. Consider a proton bound within nucleus. Using the uncertainty relation $\Delta p.\Delta r \geq \hbar/2$, estimate the root mean square speed of the proton, assuming it to be non-relativistic. (You can assume that the average value of p^2 is square of the uncertainty in momentum.)
- 3. For a non-relativistic electron, using the uncertainty relation $\Delta x \Delta p_x = \hbar/2$
 - (a) Derive the expression for the minimum kinetic energy of the electron localized in a region of size ' a '.
 - (b) If the uncertainty in the location of a particle is equal to its de Broglie wavelength, show that the uncertainty in the measurement of its velocity is same as the particle velocity.
 - (c) Using the expression in (b), calculate the uncertainty in the velocity of an electron having energy 0.2keV
 - (d) An electron of energy 0.2keV is passed through a circular hole of radius 10^{-6} m. What is the uncertainty introduced in the angle of emergence in radians? (Given $\tan \theta \cong \theta$)
- 4. A particle of mass m moves in a one-dimensional potential $V(x) = \alpha |x|$ where $\alpha > 0$. Using Heisenberg's uncertainty relation, the minimum total energy of the particle is found to have the form $E_{\min} = AB^{1/3}$. Find A and B.